【題目】如圖,延長線段ABC使BC=2AB,延長線段BAD使AD=3AB,點E是線段DB的中點,點F是線段AC的中點,若EF=10cm,求AB、CD的長度

【答案】AB=4cmCD=24cm

【解析】

設(shè)AB=xcm,則BC=2xcm,AD=3xcm,根據(jù)線段中點的定義得到BE=BD=2xcm,AF=AC=xcm,根據(jù)線段的和差即可得到結(jié)論.

解:設(shè)AB=xcm,則BC=2AB=2xcm,AD=3AB=3xcm

BD=AD+AB=4xcm,AC=AB+BC=3xcm

∵點E是線段DB的中點,點F是線段AC的中點,

BE=BD=2xcm,AF=AC=xcm,

EF=BE+AF-AB=xcm=10cm,

x=4,

AB=4cmCD=6×4=24cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=54°,以AB為直徑的 O分別交ACBC于點DE,過點B作⊙O的切線,交AC的延長線于點F

1求證:BE=CE

2求∠CBF的度數(shù);

3AB=6,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某制筆企業(yè)欲將200件產(chǎn)品運往,,三地銷售,要求運往地的件數(shù)是運往地件數(shù)的2倍,各地的運費如圖所示.設(shè)安排件產(chǎn)品運往地.

產(chǎn)品件數(shù)(件)

運費(元)

1)①根據(jù)信息補全上表空格.②若設(shè)總運費為元,寫出關(guān)于的函數(shù)關(guān)系式及自變量的取值范圍.

2)若運往地的產(chǎn)品數(shù)量不超過運往地的數(shù)量,應(yīng)怎樣安排,三地的運送數(shù)量才能達(dá)到運費最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在左側(cè)的一點,且A,B兩點間的距離為10。動點P從點A出發(fā),以每秒6個單位長度的度沿數(shù)軸向左勻速運動,設(shè)運動時間為t秒。

1)數(shù)軸上點B表示的數(shù)是______;當(dāng)點P運動到AB的中點時,它所表示的數(shù)是_____。

2)動點Q從點B出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),求:

①當(dāng)點P運動多少秒時,點P追上點Q?

②當(dāng)點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是邊長為1的菱形ABCD對角線AC上的一個動點,點M,N分別是AB,BC邊上的中點,則的最小值是(

A. 2B. C. 1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O交BC于點D,過點D作O的切線DE,交AC于點E,AC的反向延長線交O于點F.

(1)求證:DEAC;

(2)若DE+EA=8,O的半徑為10,求AF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)格是由邊長為1的小正方形組成,點A,BC位置如圖所示,若點,

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫出點C坐標(biāo)(______,______);點Bx軸的距離是______,點Cy軸的距離是______;

2)在平面直角坐標(biāo)系中找一點D,使A,B,C,D為頂點的四邊形的所有內(nèi)角都相等,再畫出四邊形ABCD

3)請你說出線段AB經(jīng)過怎樣的變換得到線段DC的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.

      ;    ;    

2)通過拼圖,你發(fā)現(xiàn)前三個圖形的面積與第四個圖形面積之間有什么關(guān)系?請用數(shù)學(xué)式子表示   ;

3)利用(2)的結(jié)論計算992+2×99×1+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是平行四邊形ABCD的邊AB、CD上的兩點,且∠CBF=ADE.(1)求證:ADE≌△CBF;

(2)判定四邊形DEBF是否是平行四邊形?

查看答案和解析>>

同步練習(xí)冊答案