【題目】如圖1,在△ABC中,點PBC邊上一點,設BPx,AP2y,已知yx的二次函數(shù)的一部分,其圖象如圖2,點Q212)是圖象上的最低點,且圖象與y軸交于(016).

1)求y關(guān)于x的函數(shù)解析式;

2)當△ABP為直角三角形時,BP的值是多少?

【答案】1yx24x+160x12);(2)當△ABP為直角三角形時,BP的值是28

【解析】

1)根據(jù)二次函數(shù)的頂點式設出拋物線解析式,再將點(0,16)代入即可得出結(jié)論;

2)先根據(jù)圖2,判斷出AB4,BH2,BC12,進而求出∠B60°,再分兩種情況,利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.

解:(1∵yx的二次函數(shù)的一部分點,且Q2,12)是圖象上的最低點,

∴yax22+12,

圖象與y軸交于(0,16),

∴a×22+1216

∴a1,

∴y關(guān)于x的函數(shù)解析式為y=(x22+12x24x+160≤x≤12),

2)如圖1,過點AAH⊥BCH,

由圖2知,BC12BH2,AB216,

∴AB4

Rt△ABH中,cosB,

∴∠B60°,

△ABP為直角三角形時,

∠APB90°時,點P與點H重合,此時,BPBH2

∠BAP90°時,∠APB90°∠B30°,

∴BP2AB8,

即:當△ABP為直角三角形時,BP的值是28

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BCDB,DC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,DM,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點Px,y)和Qxy′),給出如下定義:

,則稱點Q為點P的“可控變點”.

例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).

(1)點(﹣5,﹣2)的“可控變點”坐標為   ;

(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標y′是7,求“可控變點”Q的橫坐標;

(3)若點P在函數(shù))的圖象上,其“可控變點”Q的縱坐標y′ 的取值范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD⊙O的內(nèi)接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長DE⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;

(2)過點BBG⊥AD,垂足為G,BGDE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點PAD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點EF,連接EF(如圖1).

(1)當點E與點B重合時,點F恰好與點C重合(如圖2).

①求證:△APB∽△DCP;

②求PCBC的長.

(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉(zhuǎn),當點E和點A重合時停止.在這個過程中(1是該過程的某個時刻),觀察、猜想并解答:

tanPEF的值是否發(fā)生變化?請說明理由.

AE=x,當△PBF是等腰三角形時,請直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,BC10,對角線ACBD相交于點O,CEBD,垂足為E,BE3DE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O ,AD、BC的延長線相交于點EAB、DC的延長線相交于點F.

(1)若∠E=500, F=400,求∠A的度數(shù).

(2)探究∠E、∠F、∠A的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.

若已選中家長A,則恰好選中自己孩子的概率是______

請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC中,AB3BP4CP,∠BPC120°,那么線段AP的長度是_____

查看答案和解析>>

同步練習冊答案