【題目】如圖1,在△ABC中,點P為BC邊上一點,設BP=x,AP2=y,已知y是x的二次函數(shù)的一部分,其圖象如圖2,點Q(2,12)是圖象上的最低點,且圖象與y軸交于(0,16).
(1)求y關(guān)于x的函數(shù)解析式;
(2)當△ABP為直角三角形時,BP的值是多少?
【答案】(1)y=x2﹣4x+16(0≤x≤12);(2)當△ABP為直角三角形時,BP的值是2或8.
【解析】
(1)根據(jù)二次函數(shù)的頂點式設出拋物線解析式,再將點(0,16)代入即可得出結(jié)論;
(2)先根據(jù)圖2,判斷出AB=4,BH=2,BC=12,進而求出∠B=60°,再分兩種情況,利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.
解:(1)∵y是x的二次函數(shù)的一部分點,且Q(2,12)是圖象上的最低點,
∴y=a(x﹣2)2+12,
∵圖象與y軸交于(0,16),
∴a×22+12=16,
∴a=1,
∴y關(guān)于x的函數(shù)解析式為y=(x﹣2)2+12=x2﹣4x+16(0≤x≤12),
(2)如圖1,過點A作AH⊥BC于H,
由圖2知,BC=12,BH=2,AB2=16,
∴AB=4,
在Rt△ABH中,cosB=,
∴∠B=60°,
當△ABP為直角三角形時,
①當∠APB=90°時,點P與點H重合,此時,BP=BH=2;
②當∠BAP=90°時,∠APB=90°﹣∠B=30°,
∴BP=2AB=8,
即:當△ABP為直角三角形時,BP的值是2或8.
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
若,則稱點Q為點P的“可控變點”.
例如:點(1,2)的“可控變點”為點(1,2),點(﹣1,3)的“可控變點”為點(﹣1,﹣3).
(1)點(﹣5,﹣2)的“可控變點”坐標為 ;
(2)若點P在函數(shù)的圖象上,其“可控變點”Q的縱坐標y′是7,求“可控變點”Q的橫坐標;
(3)若點P在函數(shù)()的圖象上,其“可控變點”Q的縱坐標y′ 的取值范圍是,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉(zhuǎn),當點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設AE=x,當△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O ,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.
(1)若∠E=500, ∠F=400,求∠A的度數(shù).
(2)探究∠E、∠F、∠A的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.
若已選中家長A,則恰好選中自己孩子的概率是______.
請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com