分析 分兩種情況(1)點P在三角形的內(nèi)部時,點P到△ABC的三個頂點的距離相等,所以點P是三角形的外心;(2)點P在三角形的外部時,每條邊的垂直平分線上的點只要能夠使頂點這條邊的兩端點連接而成的三角形是等腰三角形即可.
解答 解:(1)點P在三角形內(nèi)部時,點P是邊AB、BC、CA的垂直平分線的交點,是三角形的外心;
(2)分別以三角形各頂點為圓心,邊長為半徑,交垂直平分線的交點就是滿足要求的.
每條垂直平分線上得3個交點,再加三角形的垂心,一共10個.
∵點P是等邊△ABC中邊BC的垂線AD上一點,
∴則具有這種性質(zhì)的點P共有4個.
故答案為:4個.
點評 本題主要考查等腰三角形的性質(zhì);要注意分點在三角形內(nèi)部和三角形外部兩種情況討論,思考全面是正確解答本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com