【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點,軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖像交于點,連接., ,的值是___________

【答案】3.

【解析】

過點BBDy軸與點D.令一次函數(shù)解析式中x=0得出點C的坐標(biāo),從而得出線段OC的長度,結(jié)合三角形的面積公式已經(jīng)SOBC=1,即可求出線段BD的長度,再通過tanBOC=,即可求出線段OD的長度,結(jié)合反比例系數(shù)k的幾何意義即可得出結(jié)論.

過點BBDy軸與點D,如圖所示.

令一次函數(shù)y=k1x+2x=0,則有y=2
∴點C的坐標(biāo)為(0,2),
OC=2
又∵SOBC=OCBD=1,
BD=1
tanBOC=,
OD=3
SOBD=ODBD==k2,
k2=3

故答案為:3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1yx+12x軸、y軸分別交于A、B兩點,直線l2x軸、y軸分別交于C、B兩點,且ABBC34

1)求直線l2的解析式,并直接判斷△ABC的形狀(不需說明理由);

2)如圖1P為直線l1上一點,橫坐標(biāo)為12,Q為直線l2上一動點,當(dāng)PQ+CQ最小時,將線段PQ沿射線PA方向平移,平移后P、Q的對應(yīng)點分別為P'、Q',當(dāng)OQ'+BQ'最小時,求點Q'的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝即將到來的“三月三”壯族傳統(tǒng)節(jié)日,某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績,并制作成如下圖表:

請根據(jù)如上圖表提供的信息,解答下列問題:

1)這次隨機(jī)抽查了 名學(xué)生,表中的數(shù)

2)請在圖中補全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計圖,分?jǐn)?shù)段所對應(yīng)扇形的圓心角為 度;

4)全校共有名學(xué)生參加比賽,估計該校成績范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、bm、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,3),B(1,0),連接BA,將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BC,反比例函數(shù)y的圖象G經(jīng)過點C

(1)請直接寫出點C的坐標(biāo)及k的值;

(2)若點P在圖象G上,且∠POBBAO,求點P的坐標(biāo);

(3)在(2)的條件下,若Q(0,m)為y軸正半軸上一點,過點Qx軸的平行線與圖象G交于點M,與直線OP交于點N,若點M在點N左側(cè),結(jié)合圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進(jìn)行下去,則的長是_____

查看答案和解析>>

同步練習(xí)冊答案