【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖像交于點,連接.若, ,則的值是___________.
【答案】3.
【解析】
過點B作BD⊥y軸與點D.令一次函數(shù)解析式中x=0得出點C的坐標(biāo),從而得出線段OC的長度,結(jié)合三角形的面積公式已經(jīng)S△OBC=1,即可求出線段BD的長度,再通過tan∠BOC=,即可求出線段OD的長度,結(jié)合反比例系數(shù)k的幾何意義即可得出結(jié)論.
過點B作BD⊥y軸與點D,如圖所示.
令一次函數(shù)y=k1x+2中x=0,則有y=2,
∴點C的坐標(biāo)為(0,2),
∴OC=2.
又∵S△OBC=OCBD=1,
∴BD=1.
∵tan∠BOC=,
∴OD=3.
S△OBD=ODBD==k2,
∴k2=3.
故答案為:3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=x+12與x軸、y軸分別交于A、B兩點,直線l2與x軸、y軸分別交于C、B兩點,且AB:BC=3:4.
(1)求直線l2的解析式,并直接判斷△ABC的形狀(不需說明理由);
(2)如圖1,P為直線l1上一點,橫坐標(biāo)為12,Q為直線l2上一動點,當(dāng)PQ+CQ最小時,將線段PQ沿射線PA方向平移,平移后P、Q的對應(yīng)點分別為P'、Q',當(dāng)OQ'+BQ'最小時,求點Q'的坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝即將到來的“三月三”壯族傳統(tǒng)節(jié)日,某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績,并制作成如下圖表:
請根據(jù)如上圖表提供的信息,解答下列問題:
(1)這次隨機(jī)抽查了 名學(xué)生,表中的數(shù) . .
(2)請在圖中補全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計圖,分?jǐn)?shù)段所對應(yīng)扇形的圓心角為 度;
(4)全校共有名學(xué)生參加比賽,估計該校成績范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關(guān)系是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,3),B(1,0),連接BA,將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BC,反比例函數(shù)y=的圖象G經(jīng)過點C.
(1)請直接寫出點C的坐標(biāo)及k的值;
(2)若點P在圖象G上,且∠POB=∠BAO,求點P的坐標(biāo);
(3)在(2)的條件下,若Q(0,m)為y軸正半軸上一點,過點Q作x軸的平行線與圖象G交于點M,與直線OP交于點N,若點M在點N左側(cè),結(jié)合圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個實數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1作x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進(jìn)行下去,則的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com