如圖,在平面直角坐標(biāo)系中,直線y=-
34
x+b
分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),四邊形ABCD是正方形.

(1)填空:b=
6
6

(2)求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).
分析:(1)由直線y=-
3
4
x+b
分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),即可求得b的值;
(2)首先過點(diǎn)D作DE⊥x軸于點(diǎn)E,易證得△AOB≌△DEA,則可求得DE與AE的長(zhǎng),繼而可求得點(diǎn)D的坐標(biāo);
(3)分別從當(dāng)OM=MB=BN=NO時(shí),四邊形OMBN為菱形與當(dāng)OB=BN=NM=MO=6時(shí),四邊形BOMN為菱形去分析求解即可求得答案.
解答:解:(1)∵直線y=-
3
4
x+b
分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),
∴-
3
4
×8+b=0,
解得:b=6,;

(2)如圖1,過點(diǎn)D作DE⊥x軸于點(diǎn)E,
則∠AOB=∠DEA=90°,
∴∠1+∠2=90°,∠2+∠3=90,
∴∠1=∠3,
又∵四邊形ABCD是正方形,
∴AB=DA,
∵在△AOB和△DEA中,
∠3=∠1
∠AOB=∠DEA
AB=DA

∴△AOB≌△DEA(AAS),
∴OA=DE=8,OB=AE=6,
∴OE=OA+AE=8+6=14,
∴點(diǎn)D的坐標(biāo)為(14,8);

(3)存在.
①如圖2,當(dāng)OM=MB=BN=NO時(shí),四邊形OMBN為菱形.連接NM,交OB于點(diǎn)P,則NM與OB互相垂直平分,
∴OP=
1
2
OB=3,
∴當(dāng)y=3時(shí),-
3
4
x+6=3,
解得:x=4,
∴點(diǎn)M的坐標(biāo)為(4,3),
∴點(diǎn)N的坐標(biāo)為(-4,3).
②如圖3,當(dāng)OB=BN=NM=MO=6時(shí),四邊形BOMN為菱形.延長(zhǎng)NM交x軸于點(diǎn)P,則MP⊥x軸.
∵點(diǎn)M在直線y=-
3
4
x+6上,
∴設(shè)點(diǎn)M的坐標(biāo)為(a,-
3
4
a+6)(a>0),
在Rt△OPM中,OP2+PM2=OM2,
即:a2+(-
3
4
a+6)2=62
整理得:
25
16
a2-9a=0,
∵a>0,
25
16
a-9=0,
解得:a=
144
25

∴點(diǎn)M的坐標(biāo)為(
144
25
,
42
25
),
∴點(diǎn)N的坐標(biāo)為(
144
25
,
192
25
).
綜上所述,x軸上方的點(diǎn)N有兩個(gè),分別為(
144
25
192
25
)和(-4,3).
故答案為:6.
點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、菱形的性質(zhì)以及勾股定理.此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案