【題目】已知:在中,,,過點(diǎn)、分別作的垂線與過點(diǎn)的直線交于兩點(diǎn).

1)如圖1,求證:

2)如圖2,連接、相交于點(diǎn),在不添加任何輔助線的情況下,請(qǐng)寫出圖2中的四對(duì)三角形,使寫出的每對(duì)三角形面積相等.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)在AB上截取AG=AD,通過證明△ADC≌△AGC,可得∠D=1,由補(bǔ)角的性質(zhì)可得∠2=E,通過證明△BCG≌△BCE,可得BG=BE,即可得結(jié)論;

2)由等底等高的兩個(gè)三角形面積相等和三角形中線性質(zhì)可求解.

1)證明:在上取一點(diǎn),使得,

中,,

,,

,

中,,,

SAS),

,

,

,

,

,

又∵,

,

中,,,

AAS),

,

;

2))∵ADBE,

SEAD=SBADSABE=SDEB,

SEDF=SFAB,

由(1)可知,DC=CE=CG

SBCD=SBCE,

∴△EAD和△BAD,△AEB和△DEB,△FDE和△FAB,△BCE和△BCD,每對(duì)三角形面積相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1.對(duì)角線AC、BD相交于點(diǎn)O,PBC延長線上的一點(diǎn),APBD于點(diǎn)E,交CD于點(diǎn)H,OPCD于點(diǎn)F,且EFAC平行.

1)求證:EFBD

2)求證:四邊形ACPD為平行四邊形.

3)求OF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(與點(diǎn)不重合),連接

1)將射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)45°,交直線于點(diǎn)

依題意補(bǔ)全圖1;

小研通過觀察、實(shí)驗(yàn),發(fā)現(xiàn)線段,,存在以下數(shù)量關(guān)系:

的平方和等于的平方.小研把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成證明該猜想的幾種想法:

想法1:將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到線段,要證的關(guān)系,只需證的關(guān)系.

想法2:將沿翻折,得到,要證的關(guān)系,只需證的關(guān)系.

請(qǐng)你參考上面的想法,用等式表示線段的數(shù)量關(guān)系并證明;(一種方法即可)

2)如圖2,若將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn)135°,交直線于點(diǎn).小研完成作圖后,發(fā)現(xiàn)直線上存在三條線段(不添加輔助線)滿足:其中兩條線段的平方和等于第三條線段的平方,請(qǐng)直接用等式表示這三條線段的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),經(jīng)過某點(diǎn)且平行于、的直線,叫該點(diǎn)關(guān)于關(guān)聯(lián)線

例如,如圖1,點(diǎn)關(guān)于關(guān)聯(lián)線是:,

(1)在以下3條線中,________是點(diǎn)關(guān)于關(guān)聯(lián)線”(填出所有正確的序號(hào));①;②;③

(2)如圖2,拋物線經(jīng)過點(diǎn),頂點(diǎn)在第一象限,且點(diǎn)有一條關(guān)于關(guān)聯(lián)線,求此拋物線的表達(dá)式;

(3)(2)的條件下,過點(diǎn)軸于點(diǎn),點(diǎn)是線段上除點(diǎn)外的任意一點(diǎn),連接,將沿著折疊,點(diǎn)落在點(diǎn)的位置,當(dāng)點(diǎn)點(diǎn)關(guān)于的平行于關(guān)聯(lián)線上時(shí),滿足(2)中條件的拋物線沿對(duì)稱軸向下平移多少距離,其頂點(diǎn)落在上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求拋物線的對(duì)稱軸及線段AB的長;

(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;

(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為夢之點(diǎn),例如,點(diǎn)(1,1),(﹣ 2,﹣ 2),(, ),…,都是夢之點(diǎn),顯然夢之點(diǎn)有無數(shù)個(gè).

(1)若點(diǎn) P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢之點(diǎn),求這個(gè)反比例函數(shù)解析式;

(2)⊙ O 的半徑是 ,

①求出⊙ O 上的所有夢之點(diǎn)的坐標(biāo);

②已知點(diǎn) M(m,3),點(diǎn) Q 是(1)中反比例函數(shù) 圖象上異于點(diǎn) P 的夢之點(diǎn),過點(diǎn)Q 的直線 l 與 y 軸交于點(diǎn) A,tan∠OAQ= 1.若在⊙ O 上存在一點(diǎn) N,使得直線 MN ∥ l或 MN ⊥ l,求出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面數(shù)據(jù)是截至2010年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡:

29 39 35 33 39 28 33 35 31 31 37 32 38

36 31 39 32 38 37 34 29 34 38 32 35 36

33 29 32 35 36 37 39 38 40 38 37 39 38

34 33 40 36 36 37 40 31 38 38 40 40 37

小果、小凍、小甜將數(shù)據(jù)整理,分別按組距是2,510進(jìn)行分組,列出頻數(shù)分布表,畫出頻數(shù)分布直方圖,如下:

年齡

頻數(shù)

4

4

8

7

11

13

5

年齡

頻數(shù)

4

15

28

5

年齡

頻數(shù)

4

43

5

根據(jù)以上材料回答問題:

小果、小凍、小甜三人中,比較哪一位同學(xué)分組能更好的說明費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡分布,并簡要說明其他兩位同學(xué)分組的不足之處.

費(fèi)爾茲獎(jiǎng)是國際上享有崇高聲譽(yù)的一個(gè)數(shù)學(xué)獎(jiǎng)項(xiàng),每4年評(píng)選一次,主要授予年輕的數(shù)學(xué)家,美籍華人丘成桐(1949年出生)1982年獲費(fèi)爾茲獎(jiǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《太原市電動(dòng)自行車管理?xiàng)l例》的規(guī)定,201951日起,未上牌的電動(dòng)自行車將禁止上路行駛,而電動(dòng)自行車上牌登記必須滿足國家標(biāo)準(zhǔn).某商店購進(jìn)了甲.乙兩種符合國家標(biāo)準(zhǔn)的新款電動(dòng)自行車.其中甲種車總進(jìn)價(jià)為22500元,乙種車總進(jìn)價(jià)為45000元,已知乙種車每輛的進(jìn)價(jià)是甲種車進(jìn)價(jià)的1.5倍,且購進(jìn)的甲種車比乙種車少5輛.

(1)甲種電動(dòng)自行車每輛的進(jìn)價(jià)是多少元?

(2)這批電動(dòng)自行車上市后很快銷售一空.該商店計(jì)劃按原進(jìn)價(jià)再次購進(jìn)這兩種電動(dòng)自行車共50輛,將新購進(jìn)的電動(dòng)自行車按照表格中的售價(jià)銷售.設(shè)新購進(jìn)甲種車m(20m30),兩種車全部售出的總利潤為y(不計(jì)其他成本)

ym之間的函數(shù)關(guān)系式;

商店怎樣安排進(jìn)貨方案,才能使銷售完這批電動(dòng)自行車獲得的利潤最大?最大利潤是多少?

型號(hào)

售價(jià)(/)

2000

2800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)D、EF分別為邊BC、ADCE的中點(diǎn),若△ABC的面積為16,則圖中陰影部分的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案