精英家教網(wǎng)如圖,第一個(gè)圖形都是由小正方形拼成的,根據(jù)圖形的規(guī)律計(jì)算:1+3+5+7+9+…+(2n-1)=
 
.(用正整數(shù)n表示)
分析:仔細(xì)分析后找到通項(xiàng)公式為1+3+5+7+9+…+(2n-1)=(
1+2n-1
2
2=n2
解答:解:第一個(gè)圖形有1個(gè)正方形;
第二個(gè)圖形有1+3=4=(
1+3
2
2=22個(gè)正方形
第三個(gè)圖形有1+3+5=9=(
1+5
2
2=32個(gè)正方形,

∴1+3+5+7+9+…+(2n-1)=(
1+2n-1
2
2=n2
故答案為n2
點(diǎn)評(píng):本題考查了圖形的變化類問(wèn)題,解題的關(guān)鍵是仔細(xì)觀察圖形并從中找到通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出三次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)作圖題:(不要求寫作法)
如圖,在10×10的方格紙中,有一個(gè)格點(diǎn)四邊形ABCD(即四邊形的頂點(diǎn)都在格點(diǎn)上).
①在給出的方格紙中,畫出四邊形ABCD向下平移5格后的四邊形A1B1C1D1;
②在給出的方格紙中,畫出四邊形ABCD關(guān)于直線l對(duì)稱的圖形A2B2C2D2
精英家教網(wǎng)
(2)某班舉行演講革命故事的比賽中有一個(gè)抽獎(jiǎng)活動(dòng).活動(dòng)規(guī)則是:進(jìn)入最后決賽的甲、乙兩位同學(xué),每人只有一次抽獎(jiǎng)機(jī)會(huì),在如圖所示的翻獎(jiǎng)牌正面的4個(gè)數(shù)字中任選一個(gè)數(shù)字,選中后可以得到該數(shù)字后面的獎(jiǎng)品,第一人選中的數(shù)字,第二人就不能再選擇該數(shù)字.
①求第一位抽獎(jiǎng)的同學(xué)抽中文具與計(jì)算器的概率分別是多少?
②有同學(xué)認(rèn)為,如果甲先抽,那么他抽到海寶的概率會(huì)大些,你同意這種說(shuō)法嗎?說(shuō)明理由.
翻獎(jiǎng)牌正面:
1 2
3 4
翻獎(jiǎng)牌背面:
文具 計(jì)算器
計(jì)算器 海寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•慶元縣模擬)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出二次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,第一個(gè)圖形都是由小正方形拼成的,根據(jù)圖形的規(guī)律計(jì)算:1+3+5+7+9+…+(2n-1)=________.(用正整數(shù)n表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案