【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.
求:(1)DE的長;
(2)若CE在△ABC的外部(如圖),其它條件不變,DE的長是多少?
【答案】(1)DE= 6cm;(2)DE= 12cm.
【解析】試題分析:(1)由余角的性質(zhì),推出∠CBE=∠ECA,再依據(jù)全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,結(jié)合圖形即可推出DE=6cm,(2)根據(jù)余角的性質(zhì)推出∠CBE=∠ACD,再依據(jù)全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,結(jié)合圖形即可推出DE=12cm.
試題解析:解:(1)∵∠ACB=90°,BE⊥CE,∴∠BCE+∠CBE=90°,∠BCE+∠ECA=90°,∴∠CBE=∠ECA,∠BEC=∠CDA.在△BEC和△CDA中,∵,∴△BEC≌△CDA(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴CD=3cm,CE=9cm,∴DE=CE﹣CD=6cm.
(2)∵∠ACB=90°,BE⊥CE于E,AD⊥CE于D,∴∠BCE+∠CBE=90°,∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠CBE=∠ACD.在△CBE和△ACD中,∵,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴DE=CD+CE=BE+AD=12cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是 ,小數(shù)部分是 ;
(2)1+的整數(shù)部分是 ,小數(shù)部分是 ;
(3)若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元,每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?
(3)在(2)的條件下,每件商品的售價為多少元時,每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程的解為 的解為 的解為;……根據(jù)發(fā)現(xiàn)的規(guī)律:
(1)請寫出第7個方程:___________,它的解為x1=____________ , x2=____________.
(2)請寫出第(n-1)個方程:____________,它的解為x1=____________, x2=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點分別為A(2,3),B(3,1),C(-2,-2).
(1)請在圖中作出△ABC關(guān)于y軸的軸對稱圖形△A′B′C′(A,B,C的對稱點分別是A′,B′,C′),并直接寫出A′,B′,C′的坐標(biāo).
(2)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為∠CAF的角平分線,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是同一時刻學(xué)校里一棵樹和旗桿的影子,如果樹高為3米,測得它的影子長為1.2米,旗桿的高度為5米,則它的影子長為( )
A.4米
B.2米
C.1.8米
D.3.6米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC,BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別,隨機(jī)從箱子里取出1個球,放回攪勻再取一次,請你用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果,求兩次取出的都是白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com