【題目】已知A(0,2),B(4,0).
(1)如圖1,連接AB,若D(0,﹣6),DE⊥AB于點E,B、C關(guān)于y軸對稱,M是線段DE上的一點,且DM=AB,連接AM,試判斷線段AC與AM之間的位置和數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,在(1)的條件下,若N是線段DM上的一個動點,P是MA延長線上的一點,且DN=AP,連接PN交y軸于點Q,過點N作NH⊥y軸于點H,當(dāng)N點在線段DM上運動時,△MQH的面積是否為定值?若是,請求出這個值;若不是,請說明理由.
【答案】
(1)
解:結(jié)論:AC=AM,AC⊥AM.理由如下:
∵A(0,2),B(4,0)D(0,﹣6),
∴OA=2,OD=6,OB=4,
∵AD=OA+OD=8,BC=2OB=8,
∴AD=BC,
在△CAB與△AMD中,
,
∴△CAB≌△AMD,
∴AC=AM,∠ACO=∠MAD,
∵∠ACO+∠CAO=90°,
∴∠MAD+∠CAO=∠MAC=90°,
∴AC=AM,AC⊥AM
(2)
解:是定值,定值為4.理由如下:
如圖3
過P作PG⊥y軸于G,
在△PAG與△HND中,
,
∴△PAG≌△HND,
∴PG=HN,AG=HD,
∴AD=GH=8,
在△PQG與△NHQ中,
,
∴△PQG≌△NHQ,
∴QG=QH= GH=4,
∴S△MQH= ×4×2=4.
【解析】(1)結(jié)論:AC=AM,AC⊥AM.由已知條件得到AD=BC,推出△CAB≌△AMD,根據(jù)全等三角形的性質(zhì)得到AC=AM,∠ACO=∠MAD,由于∠ACO+∠CAO=90°,得到∠MAD+∠CAO=∠MAC=90°即可得到結(jié)論;(2)過P作PG⊥y軸于G,證得△PAG≌△HND,根據(jù)全等三角形的性質(zhì)得到PG=HN,AG=HD,證得△PQG≌△NHQ,得到QG=QH= GH=4即可得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任意寫出一個偶數(shù)和一個奇數(shù),兩數(shù)之和是奇數(shù)的概率是 , 兩數(shù)之和是偶數(shù)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQ∥OC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)要證明命題“平行四邊形的對邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,
(1)補全求證部分;
(2)請你寫出證明過程.
證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方形和兩個等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=( )
A.90°
B.100°
C.130°
D.180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com