【題目】一個(gè)正方形和兩個(gè)等邊三角形的位置如圖所示,若∠3=50°,則∠1+∠2=(
A.90°
B.100°
C.130°
D.180°

【答案】B
【解析】解:如圖,∠BAC=180°﹣90°﹣∠1=90°﹣∠1, ∠ABC=180°﹣60°﹣∠3=120°﹣∠3,
∠ACB=180°﹣60°﹣∠2=120°﹣∠2,
在△ABC中,∠BAC+∠ABC+∠ACB=180°,
∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,
∴∠1+∠2=150°﹣∠3,
∵∠3=50°,
∴∠1+∠2=150°﹣50°=100°.
故選:B.

設(shè)圍成的小三角形為△ABC,分別用∠1、∠2、∠3表示出△ABC的三個(gè)內(nèi)角,再利用三角形的內(nèi)角和等于180°列式整理即可得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(0,2),B(4,0).
(1)如圖1,連接AB,若D(0,﹣6),DE⊥AB于點(diǎn)E,B、C關(guān)于y軸對(duì)稱,M是線段DE上的一點(diǎn),且DM=AB,連接AM,試判斷線段AC與AM之間的位置和數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,在(1)的條件下,若N是線段DM上的一個(gè)動(dòng)點(diǎn),P是MA延長(zhǎng)線上的一點(diǎn),且DN=AP,連接PN交y軸于點(diǎn)Q,過點(diǎn)N作NH⊥y軸于點(diǎn)H,當(dāng)N點(diǎn)在線段DM上運(yùn)動(dòng)時(shí),△MQH的面積是否為定值?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖∠MON=30°,P為∠MON平分線上一點(diǎn),PD⊥ON于D,PE∥ON,交OM于E,若OE=12cm,則PD長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC中(AB>AC),AH⊥BC,垂足為H,E、D、F分別是各邊的中點(diǎn),則四邊形EDHF是(
A.梯形
B.等腰梯形
C.直角梯形
D.矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖梯形ABCD中,AD∥BC,∠ABC+∠C=90°,AB=6,CD=8,M,N,P分別為AD、BC、BD的中點(diǎn),則MN的長(zhǎng)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線(k≠0,x>0)過點(diǎn)D.

(1)求雙曲線的解析式;

(2)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=55°,將其折疊,使點(diǎn)A落在邊CB上A′處,折痕為CD,則∠A′DB=(
A.40°
B.30°
C.20°
D.10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是;
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn).1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=8,AC=4,射線BM⊥AB,垂足為點(diǎn)B,一動(dòng)點(diǎn)E從A點(diǎn)出發(fā)以2厘米/秒的速度沿射線AN運(yùn)動(dòng),點(diǎn)D為射線BM上一動(dòng)點(diǎn),隨著E點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持ED=CB,當(dāng)點(diǎn)E離開點(diǎn)A后,運(yùn)動(dòng)秒時(shí),△DEB與△BCA全等.

查看答案和解析>>

同步練習(xí)冊(cè)答案