精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12CD=7,點E在邊AD上,,過點EEF//AB交邊BC于點F.

1)求線段EF的長;

2)設,聯結AF,請用向量表示向量.

【答案】19;(2

【解析】

(1)DBC的平行線分別交EFM,ABG,由DEAE=23,即可求得,然后在梯形ABCD中,ABCD,AB=12,CD=7,根據平行線分線段成比例定理,即可求得EF的長.

(2)根據(1)中的比例關系寫出向量即可.

解:(1) DBC的平行線分別交EFMABG,
,.
又∵EFABABCD,AB=12CD=7,
CD=MF=GB=7,
AG=5.

EM=AG=2.
EF=EM+MF=9

(2)∵ ,,由(1)知,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,,AE、BF交于點G,下列結論中錯誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的邊ABx,垂足為A,C的坐標為(1,0),反比例函數y= (x>0)的圖象經過BC的中點D,AB于點E.已知AB=4,BC=5.k的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉后得到正方形,依此方式,繞點連續(xù)旋轉2019次得到正方形,如果點的坐標為(1,0),那么點的坐標為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,是等邊三角形,AP、BP的延長線分別交邊CD于點E、F,聯結AC、CPACBF相交于點H,下列結論中錯誤的是(

A.AE=2DEB.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點P是直線AB上任意一點,聯結PC,在∠PCD內部作射線CQ與對角線BD交于點Q(與B、D不重合),且∠PCQ=30°.

1)如圖,當點P在邊AB上時,如果BP=3,求線段PC的長;

2)當點P在射線BA上時,設,求y關于的函數解析式及定義域;

3)聯結PQ,直線PQ與直線BC交于點E,如果相似,求線段BP的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,、、的大小關系是______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結論:①;②;③對于任意實數m,總成立;④關于的方程有兩個不相等的實數根.其中結論正確的個數為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

同步練習冊答案