【題目】拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.
(1)若m=-3,求拋物線的解析式,并寫出拋物線的對稱軸;
(2)如圖1,在(1)的條件下,設拋物線的對稱軸交x軸于D,在拋物線對稱軸左側(cè)上有 一點E,使S△ACE=S△ACD,求E點的坐標;
(3) 如圖2,設F(-1,-4),FG⊥y軸于G,在線段OG上是否存在點P,使 ∠OBP=∠FPG? 若存在,求m的取值范圍;若不存在,請說明理由.
【答案】(1)y=x2+2x-3;(2)點E坐標為(-2,-3);(3)m的取值范圍是:-4≤m≤4,且m≠0.
【解析】
(1)利用待定系數(shù)法求二次函數(shù)的解析式,并配方求對稱軸;
(2)如圖1,設E(n,n2+2n-3),先根據(jù)已知條件求S△ACE=3,根據(jù)不規(guī)則三角形面積等于鉛直高度與水平寬度的積列式可求得n的值,并根據(jù)在對稱軸左側(cè)的拋物線上有一點E,則點E的橫坐標小于-1,對n的值進行取舍,得到E的坐標;
(3) 設P(0,y),根據(jù)相似三角形對應邊成比例,列出相應的比例關系式,由y的取值范圍判斷m的取值范圍,注意分兩種情況討論: ①當B在原點的左側(cè)時,②當B在原點的右側(cè)時.
(1)當m=-3,B(-3,0),
把A(1,0),B(-3,0)代入y=x2+bx+c,聯(lián)立方程組求得,b=2,c=-3,
拋物線的解析式為y=x2+2x-3,
對稱軸x=-1;
(2)如圖,設E(n,n2+2n-3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=3,
設直線AE的解析式為y=kx+b,把A(1,0)和E(n,n2+2n-3)代入,得
解得
∴直線AE的解析式為:y=(n+3)x-n-3,
∴F(0,-n-3).
∵C(0,-3),
∴FC=-n-3-(-3)=-n,
∴S△ACE=FC(1-n)=3,
-n(1-n)=6,
n2-n-6=0,
∴n1=-2,n2=3(舍去),
∴E(-2,-3).
(3)設點P(0,y)
①m<0時,如圖所示,
易證△POB~△FPG,得
∴
∴m=y2+4y=(y+2)2-4
∵-4<y<0,∴-4≤m<0
②當m>0時,如圖所示,
易證△POB~△FPG,得
∴
∴m= -y2 -4y= -(y+2)2+4
∵-4<y<0 ∴0<m≤4
綜上所述,m的取值范圍是:-4≤m≤4,且m≠0.
故答案為:(1)y=x2+2x-3;(2)點E坐標為(-2,-3);(3)m的取值范圍是:-4≤m≤4,且m≠0.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點D是等腰直角△ABC的重心,其中∠ACB=90°,將線段CD繞點C逆時針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,若△ABC的周長為6,則△DCE的周長為( 。
A. 2 B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的等邊中,一動點沿從向移動,動點以同樣的速度從出發(fā)沿的延長線運動,連交邊于,作于,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A、B的坐標分別為(10,0)、(0,4),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C以每秒1個單位勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當BP所在直線與EC所在直線垂直時,點P運動的時間為_____秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,使點B落在長方形內(nèi)點F處,且DF=6.
(1)試說明:△ADF是直角三角形;
(2)求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學進行的推理,請你將小麗同學的推理過程補充完整.
解:成立,理由如下:
(已知)
① (同旁內(nèi)角互補,兩條直線平行)
(② )
又(已知),(等量代換)
(③ )
(④ ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰和小明沿同一條路同時從學校出發(fā)到學校圖書館查閱資料,學校與圖書館的路程是千米,小聰騎自行車,小明步行,當小聰從原路回到學校時,小明剛好到達圖書館,圖中折線和線段分別表示兩人離學校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關系,請根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學校的速度為 千米/分鐘;
(2)請你求出小明離開學校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關系;
(3)求線段的函數(shù)關系式;
(4)當小聰與小明迎面相遇時,他們離學校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點在網(wǎng)格線的交點的三角形)ABC的頂點A,C坐標分別是(a,5),(﹣1,b).
(1)求a,b的值;
(2)在圖中作出直角坐標系;
(3)在圖中作出△ABC關于y軸對稱的圖形△A'B'C'.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答下列問題:
在一個不透明的口袋中有個紅球和若干個白球,這些球除顏色不同外其他都相同,請通過以下實驗估計口袋中白球的個數(shù):從口袋中隨機摸出一球,記下顏色,再把它放回袋中,不斷重復上述過程,實驗總共摸了次,其中有次摸到了紅球,那么估計口袋中有白球多少個?
請思考并作答:
在一個不透明的口袋里裝有若干個形狀、大小完全相同的白球,在不允許將球倒出來的情況下,如何估計白球的個數(shù)(可以借助其它工具及用品)?寫出解決問題的主要步驟及估算方法,并求出結(jié)果(其中所需數(shù)量用、、等字母表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com