【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點(diǎn).
(1)求證:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,當(dāng)∠DAB等于多少時(shí),四邊形ADOE是菱形,并證明.
【答案】(1)證明見解析(2)當(dāng)∠DAB等于35°時(shí),四邊形ADOE是菱形
【解析】試題分析:(1)根據(jù)直角三角形斜邊中線等于斜邊一半得:DN=AB,由中位線定理得:OM=AB,則OM=DN,同理得:ON=ME,再根據(jù)外角定理和已知證明其夾角相等,則兩三角形全等;
(2)連接AO,當(dāng)∠DAB等于35°時(shí),四邊形ADOE是菱形,如圖2,設(shè)∠DAB=x°,則∠BND=2x°,易證得OD=OE,AD=AE,因此只要AD=OD,四邊形ADOE就是菱形;即∠DAO=∠AOD,列關(guān)于x的方程解出即可.
試題解析:證明:(1)∵∠ADB=90°,N是AB的中點(diǎn),∴DN=AB=AN,∴∠ADN=∠BAD,∵O是AB的中點(diǎn),M是AC的中點(diǎn),∴OM是△ABC的中位線,∴OM=AB,OM∥AB,∴∠OMC=∠BAC,同理得:∠BNO=∠BAC,∴∠BNO=∠OMC,∵DN=AB,OM=AB,∴DN=OM,同理得:ME=ON,∵∠BND=∠ADN+∠BAD,∠CME=∠CAE+∠AEM,∴∠BND=2∠BAD,∠CME=2∠CAE,∵∠BAD=∠CAE,∴∠BND=∠CME,∴∠BND+∠BNO=∠CME+∠OMC,即∠DNO=∠EMO,∴△EMO≌△OND;
(2)當(dāng)∠DAB等于35°時(shí),四邊形ADOE是菱形,理由是:
如圖2,連接AO,設(shè)∠DAB=x°,則∠BND=2x°,∵AB=AC,O是BC的中點(diǎn),∴AO平分∠BAC,AO⊥BC,∵∠BAC=40°,∴∠BAO=20°,在Rt△ABO中,N是AB的中點(diǎn),∴ON=AB=AN,∴∠BAO=∠AON=20°,∴∠BNO=40°,由(1)得:ON=AC,DN=AB,∴ON=DN,∴∠NDO=∠NOD=(180°-∠DNO)=90°﹣(2x°+40°)=70°﹣x°,∵∠ADB=∠AEC=90°,∠BAD=∠CAE,AB=AC,∴△ADB≌△AEC,∴AD=AE,由(1)得:△EMO≌△OND,∴OD=OE,∴當(dāng)AD=OD時(shí),四邊形ADOE是菱形,即∠DAO=∠AOD,x+20=70﹣x+20,x=35,∴當(dāng)∠DAB等于35°時(shí),四邊形ADOE是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中,錯(cuò)誤結(jié)論有( );①三角形三條高(或高的延長線)的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個(gè)多邊形的邊數(shù)每增加一條,這個(gè)多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個(gè)外角等于任意兩個(gè)內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長三角形的三邊,所得的三角形三個(gè)外角中銳角最多有一個(gè)
A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車上學(xué),開始以正常速度勻速行駛,但行至中途時(shí),自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關(guān)于時(shí)間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點(diǎn)A和點(diǎn)B.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點(diǎn)為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù).
(1)滿足何條件時(shí),y隨x的增大而減。
(2)滿足何條件時(shí),圖像經(jīng)過第一、二、四象限;
(3)滿足何條件時(shí),它的圖像與y軸的交點(diǎn)在x軸的上方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點(diǎn)D在AC上,BC=BD,DE∥BC交AB于點(diǎn)E,則圖中等腰三角形共有( )
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如圖1,將AD、EB延長,延長線相交于點(diǎn)0.
①求證:BE= AD;
②用含α的式子表示∠AOB的度數(shù)(直接寫出結(jié)果);
(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,作CM⊥AE于M點(diǎn),延長MC與BD交于點(diǎn)N.求證:N是BD的中點(diǎn).
注:第(2)問的解答過程無需注明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com