【題目】完成下面的解題過程,并在括號(hào)內(nèi)填上依據(jù).如圖,EF∥AD,∠1=∠2,∠BAC=85°.求∠AGD的度數(shù)
解: ∵EF∥AD,
∴∠2=____( )
又∵∠1=∠2
∴∠1=∠3
∴ ∥____( )
∴∠BAC+____=180°
∵∠BAC=85°
∴∠AGD=950
【答案】∠3;兩直線平行,同位角相等;DG AB;內(nèi)錯(cuò)角相等,兩直線平行;∠AGD
【解析】試題分析:根據(jù)平行線的性質(zhì):兩直線平行,同位角相等,得到∠2=∠3,再由∠1=∠2根據(jù)等量代換得到∠1=∠3,然后由平行線的判定:內(nèi)錯(cuò)角相等,兩直線平行,得到AB∥DG,再根據(jù)性質(zhì):兩直線平行,同旁內(nèi)角互補(bǔ),可以得到∠BAC+∠AGD =180°.
試題解析:∵EF∥AD,
∴∠2=__∠3__(兩直線平行,同位角相等 )
又∵∠1=∠2
∴∠1=∠3
∴AB ∥_DG ___( 內(nèi)錯(cuò)角相等,兩直線平行 )
∴∠BAC+__∠AGD __=180°
∵∠BAC=85°
∴∠AGD=950
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD的周長為32cm,AB=4cm,則BC的長為( )
A. 4cm B. 12cm C. 16cm D. 24cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是甲、乙兩人在爭奪冠軍中的比賽圖,其中t表示賽跑時(shí)所用時(shí)間,s表示賽跑的距離,根據(jù)圖象回答下列問題:
(1)圖象反映了哪兩個(gè)變量之間的關(guān)系?
(2)他們進(jìn)行的是多遠(yuǎn)的比賽?
(3)誰是冠軍?
(4)乙在這次比賽中的速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一食堂需要購買盒子存放食物,盒子有A、B兩種型號(hào),單個(gè)盒子的容量和價(jià)格如表格所示.現(xiàn)有15升食物需要存放且要求每個(gè)盒子都要裝滿,由于A型號(hào)盒子正做促銷活動(dòng):購買三個(gè)及三個(gè)以上可一次性每個(gè)返還現(xiàn)金1.5元,則該食堂購買盒子所需最少費(fèi)用是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠EOF,求作∠E′O′F′,使得∠E′O′F′=∠EOF,則作法的合理順序是【 】
①以點(diǎn)C′為圓心,以CD的長為半徑畫弧,交前面的弧于點(diǎn)D′;②以點(diǎn)O為圓心,以任意長為半徑畫弧,交OE于點(diǎn)C,交OF于點(diǎn)D;③作射線O′E′;④以點(diǎn)O′為圓心,以OC的長為半徑畫弧,交O′E′于點(diǎn)C′;⑤過點(diǎn)D′作射線O′F′,∠E′O′F′就是所求作的角.
A. ③②①④⑤ B. ③②④①⑤
C. ②④③①⑤ D. ②③①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經(jīng)過點(diǎn)A、B、D,且∠A=60°,求此時(shí)菱形的邊長;
(2)若點(diǎn)P為AB上一點(diǎn),把菱形ABCD沿過點(diǎn)P的直線a折疊,使點(diǎn)D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某樓盤2016年房價(jià)為每平方米15600元,經(jīng)過兩年連續(xù)降價(jià)后,2018年房價(jià)為每平方米12400元。設(shè)該樓盤這兩年房價(jià)每年平均降低率為x,根據(jù)題意可列方程為( )
A. 15600(1-2x)=12400 B. 2×15600(1-2x)=12400
C. 15600(1-x)2=12400 D. 15600(1-x2)=12400
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com