【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,△ABC的面積是10,那么這個正方形的邊長是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC是∠AOB的平分線,點P在OC上且OP=4,∠AOB=60°,過點P的動直線DE交OA于D,交OB于E,那么=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿ABC中,∠B = 50,∠C = 70,AD是高,AE是角平分線,
(1)∠BAC=__________,∠DAC=__________.(填度數(shù))
(2)求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=6,OB=8,OC=10,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結(jié)論是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是 ,位置關(guān)系是 .
(2)探究證明:
在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是線段AB上的一個點,分別以AP,PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點P,C,E在一條直線上,點M,N分別是對角線AC,BE的中點,連接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,則線段MN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設(shè)AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結(jié)論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com