【題目】如圖,AB、CD是的直徑,
于E,連接BD.
如圖1,求證:
;
如圖2,F是OC上一點,
,求證:
;
在
的條件下,連接BC,AF的延長線交BC于H,若
,
,求HF的長.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A.在一個角的內部(包括頂點)到角的兩邊距離相等的點的軌跡是這個角的平分線
B.到點距離等于
的點的軌跡是以點
為圓心,
為半徑的圓
C.到直線距離等于
的點的軌跡是兩條平行于
且與
的距離等于
的直線
D.等腰的底邊
固定,頂點
的軌跡是線段
的垂直平分線
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列等式從左到右的變形中,屬于因式分解的是( �。�
A.2x+1=x(2+)
B.ax2﹣a=a(x2﹣1)
C.(x+2)(x﹣1)=x2+x﹣2
D.﹣4a2+9b2=(3b﹣2a)(3b+2a)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,中,
.
(1)按要求作出圖形:
①延長到點
,使
;②延長
到點
,使
;③連接
,
.
(2)猜想(1)中線段與
的大小關系,并證明你的結論.
解:(1)完成作圖
(2)與
的大小關系是______
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“不闖紅燈,珍惜生命”活動中,文明中學的王欣和李好兩位同學某天來到城區(qū)中心的十字路口,觀察、統(tǒng)計上午7::00中闖紅燈的人次,制作了兩個數(shù)據(jù)統(tǒng)計圖
圖
和
.
圖a提供的五個數(shù)據(jù)
各時段闖紅燈人次
的中位數(shù)是______,平均數(shù)是______;
在扇形統(tǒng)計圖中,求未成年人類對應扇形的圓心角的度數(shù),并估計一個月
按30天計算
上午7:
:00在該十字路口闖紅燈的未成年人約有多少人次.
根據(jù)統(tǒng)計圖提供的信息向交通管理部門提出一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)、
、
都是常數(shù),且
叫做“奇特函數(shù)”,當
時,奇特函數(shù)
就成為反比例函數(shù)
是常數(shù),且
.
若矩形的兩邊長分別是
、
,當兩邊長分別增加
、
后得到的新矩形的面積是
,求
與
的函數(shù)關系式,并判斷這個函數(shù)是否“奇特函數(shù)”;
如圖在直角坐標系中,點
為原點矩形
的頂點,
、
坐標分別為
、
,點
是
中點,連接
、
交于
,“奇特函數(shù)”
的圖象經過點
、
,求這個函數(shù)的解析式,并判斷
、
、
三點是否在這個函數(shù)圖象上;
對于
中的“奇特函數(shù)”
的圖象,能否經過適當?shù)淖儞Q后與一個反比例函數(shù)圖象重合,若能,請直接寫出具體的變換過程和這個反比例函數(shù)解析式;若不能,請簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位的正方形,已知的三個頂點在格點上.
(1)以為頂點,畫一個
,使
三邊長分別為2,
,
;
(2)畫出,使它與
關于直線
對稱;
(3)寫出的面積,即
______;
(4)在直線上畫出點
,使
最小,最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若兩條拋物線的頂點相同,則稱它們?yōu)?/span>“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人同時從A地前往相距5千米的B地.甲騎自行車,途中修車耽誤了20分鐘,甲行駛的路程(千米)關于時間
(分鐘)的函數(shù)圖像如圖所示;乙慢跑所行的路程
(千米)關于時間
(分鐘)的函數(shù)解析式為
.
(1)在圖中畫出乙慢跑所行的路程關于時間的函數(shù)圖像;
(2)乙慢跑的速度是每分鐘________千米;
(3)甲修車后行駛的速度是每分鐘________千米;
(4)甲、乙兩人在出發(fā)后,中途________分鐘時相遇.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com