【題目】如圖,在△ABC中,∠A=90°,∠ACB的平分線交AB于D,已知∠DCB=2∠B,求∠ACD的度數(shù).

【答案】36°

【解析】

設(shè)∠B=x,由∠DCB=2B可知∠DCB=2x,根據(jù)∠C的平分線交ABD可知∠ACD=DCB=2x,根據(jù)三角形外角的性質(zhì)可知∠ADC=B+DCB=3x,根據(jù)三角形內(nèi)角和定理求出x的值,進(jìn)而可得出結(jié)論.

設(shè)∠B=x,

∵∠DCB=2B,

∴∠DCB=2x,

∵∠C的平分線交ABD,

∴∠ACD=DCB=2x,

∵∠ADCBCD的外角,

∴∠ADC=B+DCB=3x,

ACD中,

∵∠A+ACD+ADC=180°,

90°+2x+3x=180°,解得x=18°,

∴∠ACD=2x=2×18°=36°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進(jìn)價、售價如下表:

進(jìn)價(元/只)

售價(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?

(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)用公式法解方程x2﹣3x﹣7=0.
(2)解方程:4x(2x﹣1)=3(2x﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關(guān)于坐標(biāo)原點O的對稱點B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,一個直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY,XZ分別經(jīng)過點B,C,△ABC中,若∠A=30°,則∠ABC+∠ACB=__ __,∠XBC+∠XCB=__ __;

(2)若改變直角三角板XYZ的位置,但三角板XYZ的兩條直角邊XY,XZ仍然分別經(jīng)過點B,C,那么∠ABX+∠ACX的大小是否變化?若變化,請說明理由;若不變化,請求出∠ABX+∠ACX的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABCC=90°,AD平分∠BAC,DEABE,則下列結(jié)論:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=5,PB=12,PC=13,若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB,求點P與點P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運球是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是_____度;

(2)補全條形統(tǒng)計圖;

(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在_____等級;

(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達(dá)到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF

(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關(guān)系?請說明理由

(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎(chǔ)上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關(guān)系,不必說明理由.

查看答案和解析>>

同步練習(xí)冊答案