【題目】把多項式2x2﹣5x+x2+4x﹣3x2合并同類項后所得的結(jié)果是( )
A.二次二項式
B.二次三項式
C.一次二項式
D.單項式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村原有林地108公頃,旱地54公頃,為保護(hù)環(huán)境,需把一部分旱地改造為林地,使旱地面積占林地面積的20%.設(shè)把x公頃旱地改為林地,則可列方程( )
A.54﹣x=20%×108
B.54﹣x=20%(108+x)
C.54+x=20%×162
D.108﹣x=20%(54+x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.
(1)求證:OE=OF.
(2)當(dāng)∠DOE等于 度時,四邊形BFDE為菱形。(直接填寫答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認(rèn)為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線y=﹣x+a與直線y=x+b的交點(diǎn)坐標(biāo)為(2,8),則a﹣b的值為( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則點(diǎn)E到BC邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲。如對于任意正實數(shù)、x,可作變形:x+=(-)2+2,因為(-)2≥0,所以x+≥2(當(dāng)x=時取等號).
記函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時,該函數(shù)有最小值為2.
直接應(yīng)用: 已知函數(shù)y1=x(x>0)與函數(shù)y2 = (x>0),則當(dāng)x= 時,y1+y2取得最小值為 .
變形應(yīng)用: 已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求 的最小值,并指出取得該最小值時相應(yīng)的x的值.
實際應(yīng)用:汽車的經(jīng)濟(jì)時速是指汽車最省油的行駛速度。某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(+)升。若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
①、求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
②、求該汽車的經(jīng)濟(jì)時速及經(jīng)濟(jì)時速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市地鐵一號與地鐵二號線接通后,該市交通通行和轉(zhuǎn)換能力成倍增長,該工程投資預(yù)算約為930000萬元,這一數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.9.3×105萬元
B.9.3×106萬元
C.0.93×106萬元
D.9.3×104萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把代數(shù)式xy2﹣9x分解因式,結(jié)果正確的是( )
A. x(y2﹣9) B. x(y+3)2 C. x(y+3)(y﹣3) D. x(y+9)(y﹣9)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com