精英家教網 > 初中數學 > 題目詳情

在直角坐標系中,下列語句正確的有
①點(2,0)在y軸上;
②點(0,0)表示坐標原點;
③點(3,-4)在第四象限.


  1. A.
    0個
  2. B.
    1個
  3. C.
    2個
  4. D.
    3個
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在直角坐標系中,下列各點到原點的距離不是5的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料:
在直角坐標系中,已知平面內A(x1,y2)、B(x1,y2)兩點坐標,則A、B兩點之間的距離等于
(x2-x2)2(y2-y1)2

例:說明代數式
x2+1
+
(x-3)2+4
的幾何意義,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+(0-1)2
+
(x-3)2+(0-2)2
,如圖,建立平面直角坐標系,點P(x,0)是x軸上一點,則
(x-0)2+(0-1)2
可以看成點P與點A(0,1)的距離,
(x-3)2+(0-2)2
可以看成點P與點B(3,2)的距離,所以原代數式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設點A關于x軸的對稱點為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構造直角三角形A′CB,因為A′C=
3
3
,CB=
3
3
,所以A′B=
3
2
3
2
,即原式的最小值為
3
2
3
2

根據以上閱讀材料,解答下列問題:
(1)完成上述填空.
(2)代數式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐標系中點P(x,0)與點A(1,1)、點B
(2,3)
(2,3)
的距離之和.(填寫點B的坐標)
(3)求代數式
x2+49
+
x2-12x+37
的最小值.(畫圖計算)

查看答案和解析>>

科目:初中數學 來源:學習周報 數學 北師大八年級版 2009-2010學年 第12期 總第168期 北師大版 題型:013

在直角坐標系中,下列語句正確的有

①點(2,0)y軸上;

②點(0,0)表示坐標原點;

③點(3,-4)在第四象限.

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在直角坐標系中,下列各點到原點的距離不是5的是(  )
A.(4,3)B.(
2
3
)
C.(5,0)D.(2
5
,
5
)

查看答案和解析>>

同步練習冊答案