【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,4),B(2,n)兩點(diǎn),與坐標(biāo)軸分別交于M、N兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b﹣>0中x的取值范圍;
(3)求△AOB的面積.
【答案】(1)y=﹣2x+6;(2)1<x<2;(3)S△AOB=3.
【解析】
(1)把A與B坐標(biāo)代入反比例解析式求出m與n的值,確定出兩點(diǎn)坐標(biāo),代入一次函數(shù)求出k與b的值,即可確定出一次函數(shù)解析式;
(2)根據(jù)題意,結(jié)合圖象確定出x的范圍即可;
(3) 由S△AOB=S△AON﹣S△BON,求出即可.
(1)∵點(diǎn)A 在反比例函數(shù)y=上,
∴=4,解得m=1,
∴點(diǎn)A的坐標(biāo)為(1,4),
又∵點(diǎn)B也在反比例函數(shù)y=上,
∴=n,解得n=2,
∴點(diǎn)B的坐標(biāo)為(2,2),
又∵點(diǎn)A、B在y=kx+b的圖象上,
∴,解得,
∴一次函數(shù)的解析式為y=﹣2x+6.
(2)x的取值范圍為1<x<2;
(3)∵直線y=﹣2x+6與x軸的交點(diǎn)為N,
∴點(diǎn)N的坐標(biāo)為(3,0),
S△AOB=S△AON﹣S△BON=×3×4﹣×3×2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲是第七屆國(guó)際數(shù)學(xué)教育大會(huì)的會(huì)徽,會(huì)徽的主體圖案是由圖乙中的一連串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.
細(xì)心觀察圖形,認(rèn)真分析下列各式,然后解答問題:
()2+1=2,S1=;()2+1=3,S2=;()2+1=4,S3=;….
(1)請(qǐng)用含有n(n是正整數(shù))的等式表示上述變化規(guī)律,并計(jì)算出OA10的長(zhǎng);
(2)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形ABC內(nèi)接于⊙O,連接OA,OB,OC,延長(zhǎng)AO分別交BC于點(diǎn)P,弧BC于點(diǎn)D,連接BD,CD.
(1)判斷四邊形BDCO是哪一種特殊四邊形,并說明理由;
(2)若等邊三角形ABC的邊長(zhǎng)6cm,求⊙O的半徑;
(3)在劣弧BD上有一點(diǎn)Q,請(qǐng)求出弓形BQD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)服裝部銷售一種名牌襯衫,平均每天可售出件,每件盈利元.為了擴(kuò)大銷售,減少庫存,商場(chǎng)決定降價(jià)銷售,經(jīng)調(diào)查,每件降價(jià)元時(shí),平均每天可多賣出件.
(1)若商場(chǎng)要求該服裝部每天盈利元,每件襯衫應(yīng)降價(jià)多少元?
(2)試說明每件襯衫降價(jià)多少元時(shí),商場(chǎng)服裝部每天盈利最多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生小張利用暑假50天在一超市勤工儉學(xué),被安排銷售一款成本為40元/件的新型商品,此類新型商品在第x天的銷售量p件與銷售的天數(shù)x的關(guān)系如下表:
x(天) | 1 | 2 | 3 | … | 50 |
p(件) | 118 | 116 | 114 | … | 20 |
銷售單價(jià)q(元/件)與x滿足:當(dāng)1≤x<25時(shí)q=x+60;當(dāng)25≤x≤50時(shí)q=40+.
(1)請(qǐng)分析表格中銷售量p與x的關(guān)系,求出銷售量p與x的函數(shù)關(guān)系.
(2)求該超市銷售該新商品第x天獲得的利潤(rùn)y元關(guān)于x的函數(shù)關(guān)系式.
(3)這50天中,該超市第幾天獲得利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與軸,軸分別交于、兩點(diǎn),且又與反比例函數(shù)的圖象在第一象限交于點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)坐標(biāo)及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線于點(diǎn)D,求線段DN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)A在x軸的正半軸上,反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)C(3,m).
(1)求菱形OABC的周長(zhǎng);
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖的信息解決下列問題:
(1)本次調(diào)查的學(xué)生有多少人?
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com