【題目】如圖,反比例函數(shù)y= 與一次函數(shù)y=ax+b的圖象交于點A(2,2)、B( ,n).
(1)求這兩個函數(shù)解析式;
(2)將一次函數(shù)y=ax+b的圖象沿y軸向下平移m個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點,求m的值.
【答案】
(1)解:∵A(2,2)在反比例函數(shù) 的圖象上,
∴k=4.
∴反比例函數(shù)的解析式為 .
又∵點B( ,n)在反比例函數(shù) 的圖象上,
∴ ,解得:n=8,
即點B的坐標為( ,8).
由A(2,2)、B( ,8)在一次函數(shù)y=ax+b的圖象上,
得: ,解得: ,
∴一次函數(shù)的解析式為y=﹣4x+10
(2)解:將直線y=﹣4x+10向下平移m個單位得直線的解析式為y=﹣4x+10﹣m,
∵直線y=﹣4x+10﹣m與雙曲線 有且只有一個交點,
令 ,得4x2+(m﹣10)x+4=0,
∴△=(m﹣10)2﹣64=0,
解得:m=2或m=18
【解析】(1)由點A在反比例函數(shù)的圖象上,結合反比例函數(shù)圖象上的點的坐標特征即可得出反比例函數(shù)的解析式;由點B的橫坐標以及反比例函數(shù)的解析式即可得出點B的坐標,再由A、B點的坐標利用待定系數(shù)法即可求出一次函數(shù)得解析式;(2)結合(1)中得結論找出平移后的直線的解析式,將其代入反比例函數(shù)解析式中,整理得出關于x的二次方程,令其根的判別式△=0,即可得出關于m的一元二次方程,解方程即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】已知,下列n(n為正整數(shù))個關于x的一元二次方程: ①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,,…
(1)上述一元二次方程的解為①________,②________,③________,④________.
(2)猜想:第n個方程為________,其解為________.
(3)請你指出這n個方程的根有什么共同的特點(寫出一條即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內角也都相等,那么這個多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個正多邊形中的變化情況,解答下列問題.
(1)將下面的表格補充完整:
(2)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
(3)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO,已知BD=.
(1)求正方形ABCD的邊長;
(2)求OE的長;
(3)①求證:CN=AF;
②直接寫出四邊形AFBO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 在平面直角坐標系中的位置如圖所示.
(1)作關于點成中心對稱的 .
(2)將向右平移4個單位,作出平移后的.
(3)在軸上求作一點,使的值最小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設點A(x1 , y1)和點B(x2 , y2)是反比例函數(shù)y= 圖象上的兩點,當x1<x2<0時,y1>y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關系,說明理由;
(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在數(shù)軸上對應的數(shù)為2,若點B也在數(shù)軸上,且線段AB的長為4,C為AB的中點,則點C在數(shù)軸上對應的數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com