【答案】
分析:本題是一道二次函數(shù)規(guī)律題,運(yùn)用由特殊到一般的解題方法,利用等腰直角三角形的性質(zhì)及點(diǎn)的坐標(biāo)的關(guān)系求出第一個(gè)等腰直角三角形的腰長(zhǎng),用類似的方法求出第二個(gè),第三個(gè)…的腰長(zhǎng),觀察其規(guī)律,最后得出結(jié)果.
解答:解:作A
1C⊥y軸,A
2E⊥y軸,垂足分別為C、E.
∵△A
1BOB
1、△A
2B
1B
2都是等腰直角三角形
∴B
1C=B
C=DB
=A
1D,B
2E=B
1E
設(shè)A
1(a,b)∴a=b將其代入解析式y(tǒng)=x
2得:
∴a=a
2解得:a=0(不符合題意)或a=1,由勾股定理得:A
1B
=
同理可以求得:A
2B
1=
A
3B
2=3
A
4B
3=4
…
∴A
2011B
2010=2011
∴△A
2011B
2010B
2011的腰長(zhǎng)為:2011
故答案為:2011
點(diǎn)評(píng):本題是一道二次函數(shù)的綜合題考查了在函數(shù)圖象中利用點(diǎn)的坐標(biāo)與圖形的關(guān)系求線段的長(zhǎng)度,涉及到了等腰三角形的性質(zhì),勾股定理,拋物線的解析式的運(yùn)用等多個(gè)知識(shí)點(diǎn).