分析:利用等腰直角三角形的性質(zhì)及點的坐標(biāo)的關(guān)系求出第一個等腰直角三角形的腰長,用類似的方法求出第二個,第三個…的腰長,觀察其規(guī)律,最后得出結(jié)果.
解答:解:作A
1C⊥y軸,A
2E⊥y軸,垂足分別為C、E.
∵△A
1BOB
1、△A
2B
1B
2都是等腰直角三角形
∴B
1C=B
0C=DB
0=A
1D,B
2E=B
1E
設(shè)A
1(a,b)∴a=b將其代入解析式y(tǒng)=x
2得:
∴a=a
2解得:a=0(不符合題意)或a=1,由勾股定理得:A
1B
0=
,
∴B
1B
0=2,
過B
1作B
1N⊥A
2F,設(shè)點A(x
2,y
2)
可得A
2N=y
2-2,B
1N=x
2=y
2-2,
又點A
2在拋物線上,所以y
2=x
22,
(x
2+2)=x
22,
解得x
2=2,x
2=-1(不合題意舍去),
∴A
2B
1=2
,
同理可得:
A
3B
2=3
A
4B
3=4
…
∴A
2012B
2011=2012
∴△A
2012B
2011B
2012的腰長為:2012
故答案為:2012
.
點評:此題主要考查了二次函數(shù)的綜合題以及在函數(shù)圖象中利用點的坐標(biāo)與圖形的關(guān)系求線段的長度,涉及到了等腰三角形的性質(zhì),勾股定理,拋物線的解析式的運用等多個知識點.