如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是 三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點E為圓心,r為半徑的圓與線段AD只有一個公共點,求出r的取值范圍.
(1)等腰;(2)存在,;(3)或.
解析試題分析:(1)根據(jù)拋物線的軸對稱性和等腰三角形的判定可得結(jié)論.
(2)根據(jù)“拋物線三角形”求出A,B的坐標(biāo),求出A,B關(guān)于原點O為對稱的點C,D的坐標(biāo),根據(jù)待定系數(shù)法求出過O、C、D三點的拋物線的表達(dá)式.
(3)點E為圓心,r為半徑的圓與線段AD只有一個公共點,則⊙E與AD相切或⊙E的半徑在AE和AD之間.
(1)等腰 .
(2)存在.
如圖,作△OCD與△OAB關(guān)于原點O中心對稱,則四邊形ABCD為平行四邊形.
當(dāng)OA=OB時,平行四邊形ABCD為矩形 .
又∵AO=AB,∴△OAB為等邊三角形.
作AE⊥OB,垂足為E.
∴.∴(b﹥0).∴.
∴.
∴ .
設(shè)過點O,C,D三點的拋物線,則
,解之,得.
∴所求拋物線的表達(dá)式為 .
(3)①⊙E與AD相切時, .
②⊙E過點D時,.
③⊙E過點A時, .
綜上所述,或.
考點:1.新定義;2.二次函數(shù)的性質(zhì);3.等腰三角形的判定;4.關(guān)于坐標(biāo)原點對稱的性質(zhì);5.待定系數(shù)法的應(yīng)用;6.曲線上點的坐標(biāo)與方程的關(guān)系;7.直線與圓的位置關(guān)系;8.分類思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸交點為A、B(點B在點A的右側(cè)),與y軸交于點C.
(1)試用含m的代數(shù)式表示A、B兩點的坐標(biāo);
(2)當(dāng)點B在原點的右側(cè),點C在原點的下方時,若是等腰三角形,求拋物線的解析式;
(3)已知一次函數(shù),點P(n,0)是x軸上一個動點,在(2)的條件下,過點P作垂直于x軸的直線交這個一次函數(shù)的圖象于點M,交拋物線于點N,若只有當(dāng)時,點M位于點N的下方,求這個一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標(biāo);
(2)在拋物線的對稱軸上找一點M,使得MD+MC的值最小,并求出點M的坐標(biāo);
(3)設(shè)點C關(guān)于拋物線對稱的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸交于點A、B兩點,與y軸交于點C.
(1)求A、B兩點的坐標(biāo);
(2)若S△ABC=8,則過A、B、C三點的圓是否與拋物線有第四個交點D?若存在,求出D點坐標(biāo);若不存在,說明理由.
(3)將△OAC沿直線AC翻折,點O的對應(yīng)點為O'.
①若O'落在該拋物線的對稱軸上,求實數(shù)a的值;
②是否存在正整數(shù)a,使得點O'落在△ABC的內(nèi)部,若存在,求出整數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某賓館有30個房間供游客住宿,當(dāng)每個房間的房價為每天120元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價1元,月銷售量可增加2萬件.
⑴ 求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷售利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫出圖象草圖;
⑶ 為了使月銷售利潤不低于480萬元,請借助⑵中所畫圖象進(jìn)行分析,說明銷售單價的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系中,拋物線交軸于A、B兩點(點A在點B左側(cè)),與軸交于點C,點A、C的坐標(biāo)分別為(-3,0),(0,3),對稱軸直線交軸于點E,點D為頂點.
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一點,且,,求點P的坐標(biāo);
(3)點M是第一象限內(nèi)拋物線上一點,且∠MAC=∠ADE,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點,以A、E、F為頂點的三角形面積為3,求點F的坐標(biāo);
(3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運(yùn)動,設(shè)運(yùn)動的時間為t秒,當(dāng)t為何值時,以P、B、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com