分析 ①根據(jù)等腰三角形的性質(zhì),可得DE的長(zhǎng),根據(jù)正弦函數(shù),可得∠CAD的度數(shù),根據(jù)等邊三角形,可得CD的長(zhǎng);
②根據(jù)等腰三角形的性質(zhì),可得DE的長(zhǎng),根據(jù)正弦函數(shù),可得∠EAD的度數(shù),根據(jù)角的和差,可得A、C、D在同一條直線上,根據(jù)線段的和差,可得答案.
解答 解:如圖1:
由BD=$\sqrt{3}$AD=2$\sqrt{3}$,得
AD=AB=AC=2.
由等腰三角形的性質(zhì),得
DE=$\sqrt{3}$.
sin∠DAE=$\frac{\sqrt{3}}{2}$,
∠DAE=60°,△ACD是等邊三角形,
CD=AC=2;
如圖2:
,
由BD=$\sqrt{3}$AD=2$\sqrt{3}$,得
AD=AB=AC=2.
由等邊三角形的性質(zhì),得
DE=$\sqrt{3}$,∠DAE=∠BAE.
sin∠DAE=$\frac{\sqrt{3}}{2}$,
∠DAE=∠BAE=60°,
AD與AC在同一條直線上,
CD=AC=2;
CD=AD+AC=2+2=4.
故答案為:2或4.
點(diǎn)評(píng) 本題考查了三角形的外心,利用等腰三角形的性質(zhì)得出DE=$\sqrt{3}$,∠DAE=∠BAE是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-2 | B. | x=-1 | C. | x=1 | D. | x=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com