【題目】如圖,一次函數(shù) y=kx+b與反比例函數(shù) y=(x>0)的圖象交于A(m,6)B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.
【答案】(1)y=-2x+8;(2)8.
【解析】
試題分析:(1)先把點A(m,6),B(3,n)分別代入y=(x>0)可求出m、n的值,確定A點坐標(biāo)為(1,6),B點坐標(biāo)為(3,2),然后利用待定系數(shù)法求一次函數(shù)的解析式;
(2)分別過點A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點.直線AB交x軸于D點.S△AOB=S△AOD-S△BOD,由三角形的面積公式可以直接求得結(jié)果.
試題解析:(1)把點(m,6),B(3,n)分別代入y=(x>0)得 m=1,n=2,
∴A點坐標(biāo)為(1,6),B點坐標(biāo)為(3,2),
把A(1,6),B(3,2)分別代入y=kx+b 得,解得,
∴一次函數(shù)解析式為y=-2x+8;
分別過點A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點.直線AB交x軸于D點.
令-2x+8=0,得x=4,即D(4,0).
∵A(1,6),B(3,2),
∴AE=6,BC=2,
∴S△AOB=S△AOD-S△BOD=×4×6-×4×2=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保△OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)
(1)若三艘軍艦要對△OBC海域進(jìn)行無盲點監(jiān)控,則雷達(dá)的有效探測半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時刻軍艦B測得A位于北偏東60°方向上,同時軍艦C測得A位于南偏東30°方向上,求此時敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20海里/小時的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 已知a,b,c是三角形的三邊,則a2+b2=c2
B. 在直角三角形中,兩邊的平方和等于第三邊的平方
C. 在Rt△ABC中,∠,所以a2+b2=c2
D. 在Rt△ABC中,∠,所以a2+b2=c2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的4×3網(wǎng)格中,每個小正方形的邊長均為1,正方形頂點叫網(wǎng)格格點,連結(jié)兩個網(wǎng)格格點的線段叫網(wǎng)格線段.
(1)請你畫一個邊長為的菱形,并求其面積;
(2)若a是圖中能用網(wǎng)格線段表示的最大無理數(shù),b是圖中能用網(wǎng)格線段表示的最小無理數(shù),求a2-2b2的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以2厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CA上由C點向A點運(yùn)動.若點Q的運(yùn)動速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時,v的值為________厘米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com