【題目】設(shè)x是有理數(shù),那么下列各式中一定表示正數(shù)的是( )

A. 2016x B. x+2016 C. |2016x| D. |x|+2016

【答案】D

【解析】當(dāng)x為負(fù)數(shù)時(shí),2016x為負(fù)數(shù),A錯(cuò)誤;

當(dāng)x<2016時(shí),x+2016<0,B錯(cuò)誤;

當(dāng)x=0時(shí),|2016x|=0,C錯(cuò)誤;

∵|x|0,∴|x|+2016>0,D正確,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)出發(fā),向左移動(dòng)3個(gè)單位再向右移動(dòng)2個(gè)單位到達(dá)點(diǎn)P,點(diǎn)P表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,點(diǎn)P在BA的延長線上,PD切O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E。

(1)求證:AB=BE;

(2)若PA=2 ,cosB=,求O半徑的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動(dòng)點(diǎn)P從A點(diǎn)出發(fā),在矩形邊上沿著ABCD的方向勻速移動(dòng),當(dāng)點(diǎn)P到達(dá)D點(diǎn)時(shí)停止移動(dòng);O在矩形內(nèi)部沿AD向右勻速平移,移動(dòng)到與CD相切時(shí)立即沿原路按原速返回,當(dāng)O回到出發(fā)時(shí)的位置(即再次與AB相切)時(shí)停止移動(dòng).已知點(diǎn)P與O同時(shí)開始移動(dòng),同時(shí)停止移動(dòng)(即同時(shí)到達(dá)各自的終止位置).

(1)如圖,點(diǎn)P從ABCD,全程共移動(dòng)了 cm(用含a、b的代數(shù)式表示);

(2)如圖,已知點(diǎn)P從A點(diǎn)出發(fā),移動(dòng)2s到達(dá)B點(diǎn),繼續(xù)移動(dòng)3s,到達(dá)BC的中點(diǎn).若點(diǎn)P與O的移動(dòng)速度相等,求在這5s時(shí)間內(nèi)圓心O移動(dòng)的距離;

(3)如圖,已知a=20,b=10.是否存在如下情形:當(dāng)O到達(dá)O1的位置時(shí)(此時(shí)圓心O1在矩形對角線BD上),DP與O1恰好相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,湖中有一小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,在小道上測得如下數(shù)據(jù):AB=60米,PAB=45°,PBA=30°.請求出小橋PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B

(1)求該反比例函數(shù)的表達(dá)式

(2)若P為y軸上的點(diǎn),且AOP的面積是AOB的面積的,請求出點(diǎn)P的坐標(biāo).

(3)寫出直線向下平移2個(gè)單位的直線解析式,并求出這條直線與雙曲線的交點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)數(shù)的和為正數(shù),則這兩個(gè)數(shù)( )

A. 至少有一個(gè)為正數(shù) B. 只有一個(gè)是正數(shù)

C. 有一個(gè)必為零 D. 都是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是(

A.96 B.69 C.66 D.99

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

同步練習(xí)冊答案