【題目】如圖, 的圖像交x軸于O點(diǎn)和A點(diǎn),將此拋物線繞原點(diǎn)旋轉(zhuǎn)180°得圖像y2 , y2與x軸交于O點(diǎn)和B點(diǎn).
(1)若y1=2x2-3x,則y2= .
(2)設(shè) y 1 的頂點(diǎn)為C,則當(dāng)△ABC為直角三角形時(shí),請(qǐng)你任寫一個(gè)符合此條件的 y 1 的表達(dá)式 .

【答案】
(1)y1=-2x2-3x
(2)y1=(x-1)2-
【解析】(1)解:y1=2x2-3x的圖像交x軸于O點(diǎn)和A點(diǎn),
∴O(0,0),A(,0),
又∵將y1繞原點(diǎn)旋轉(zhuǎn)180°得圖像y2
∴B(-,0),
∴y2解析式為:y1=-2x2-3x.
(2)依據(jù)題意得:y1=(x-1)2-
【考點(diǎn)精析】掌握勾股定理的概念是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關(guān)系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點(diǎn)作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點(diǎn)坐標(biāo);

(2)如圖2,P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、PQ三點(diǎn)共線,求此時(shí)P點(diǎn)坐標(biāo)及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)生步行到郊外旅行,七年級(jí)班學(xué)生組成前隊(duì),步行速度為4千米小時(shí),七班的學(xué)生組成后隊(duì),速度為6千米小時(shí);前隊(duì)出發(fā)1小時(shí)后,后隊(duì)才出發(fā),同時(shí)后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來回聯(lián)絡(luò),他騎車的速度為10千米小時(shí).

后隊(duì)追上前隊(duì)需要多長時(shí)間?

后隊(duì)追上前隊(duì)的時(shí)間內(nèi),聯(lián)絡(luò)員走的路程是多少?

七年級(jí)班出發(fā)多少小時(shí)后兩隊(duì)相距2千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A,C分別在x,y軸的正半軸上,已知點(diǎn)B(4,2),將矩形OABC翻折,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)P恰好落在線段OA(包括端點(diǎn)O,A)上,折痕所在直線分別交BC、OA于點(diǎn)D、E;若點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),過點(diǎn)P作OA的垂線交折痕所在直線于點(diǎn) Q.設(shè)點(diǎn)Q的坐標(biāo)為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華和小峰是兩名自行車愛好者,小華的騎行速度比小峰快兩人準(zhǔn)備在周長為250米的賽道上進(jìn)行一場(chǎng)比賽若小華在小峰出發(fā)15秒之后再出發(fā),圖中、分別表示兩人騎行路程與時(shí)間的關(guān)系.

小峰的速度為______秒,他出發(fā)______米后,小華才出發(fā);

小華為了能和小峰同時(shí)到達(dá)終點(diǎn),設(shè)計(jì)了兩個(gè)方案,方案一:加快騎行速度;方案二:比預(yù)定時(shí)間提前出發(fā).

______“A“”“B“代表方案一;

若采用方案二,小華必須在小峰出發(fā)多久后開始騎行?求出此時(shí)小華騎行的路程與時(shí)間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上(BC>AB),在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、MEEA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為S3;則S2020S2019=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(列二元一次方程組解應(yīng)用題)某公司共有3個(gè)一樣規(guī)模的大餐廳和2個(gè)一樣規(guī)模的小餐廳,經(jīng)過測(cè)試同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供300名員工就餐;同時(shí)開放1個(gè)大餐廳,1個(gè)小餐廳,可供170名員工就餐.

(1)請(qǐng)問1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名員工就餐;

(2)如果3個(gè)大餐廳和2個(gè)小餐廳全部開放,那么能否供全體450名員工就餐?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案