【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點PBC中點,兩邊PE,PF分別交邊AB,AC于點EF,當∠EPF在△ABC所在平面內(nèi)繞頂點P轉(zhuǎn)動時(E不與AB重合),給出以下四個結(jié)論:PFA≌△PEBEF=APPEF是等腰直角三角形S四邊形AEPFSABC,上述結(jié)論中始終正確有______

【答案】①③④

【解析】

由等腰直角三角形的性質(zhì)得APBC=PB,∠B=CAP=45°,根據(jù)余角的性質(zhì)得∠BPE=APF,進而即可證明△PFA≌△PEB即可判斷①;根據(jù)等腰三角形的性質(zhì)和中位線的性質(zhì),即可判斷②;由△PFA≌△PEBPE=PF,進而即可判斷③;由△PFA≌△PEB,得SPFA=SPEB,進而即可判斷④.

AB=AC,∠BAC=90°,直角∠EPF的頂點PBC的中點,

APBC,APBC=PB,∠B=CAP=45°,

∵∠APF+EPA=90°,∠EAP+BPE=90°,

∴∠BPE=APF,

在△BPE和△APF中,

,

∴△PFA≌△PEB(ASA),即結(jié)論①正確;

∵△ABC是等腰直角三角形,PBC的中點,

APBC

又∵EF不一定是△ABC的中位線,

EFAP,故結(jié)論②錯誤;

∵△PFA≌△PEB

PE=PF,

又∵∠EPF=90°,

∴△PEF是等腰直角三角形,故結(jié)論③正確;

∵△PFA≌△PEB

SPFA=SPEB,

S四邊形AEPF=SAPE+SAPF=SAPE+SBPE=SAPBSABC,故結(jié)論④正確;

綜上,當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(E不與AB重合),始終正確的有3個結(jié)論.

故答案為:①③④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)yx+4的圖象與x軸和y軸分別交于A、B兩點.動點P從點A出發(fā),在線段AO上以每秒1個單位長度的速度向點O作勻速運動,到達點O即停止運動.其中A、Q兩點關(guān)于點P對稱,以線段PQ為邊向上作正方形PQMN.設(shè)運動時間為秒.如圖①.

1)當t=2秒時,OQ的長度為    

2)設(shè)MN、PN分別與直線yx+4交于點C、D,求證:MC=NC;

3)在運動過程中,設(shè)正方形PQMN的對角線交于點E,MPQD交于點F,如圖2,求OF+EN的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線經(jīng)過點0),3,4).

1)求拋物線的表達式及對稱軸;

2)設(shè)點關(guān)于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在之間的部分為圖象(包含,兩點).若直線與圖象有公共點,結(jié)合函數(shù)圖像,求點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,AOC=60°,若將菱形OABC繞點O順時針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點B的對應(yīng)點B′的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠C90°,ACBC,點D,E分別在邊AC,BC上,CDCE,連接AE,點F,HG分別為DE,AE,AB的中點連接FHHG

1)觀察猜想圖1中,線段FHGH的數(shù)量關(guān)系是   ,位置關(guān)系是   

2)探究證明:把CDE繞點C順時針方向旋轉(zhuǎn)到圖2的位置,連接AD,AE,BE判斷FHG的形狀,并說明理由

3)拓展延伸:把CDE繞點C在平面內(nèi)自由旋轉(zhuǎn),若CD4,AC8,請直接寫出FHG面積的最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykxb的圖像與x軸和y軸的正半軸分別交于AB兩點.已知OAOB6O為坐標原點),且4,則這個一次函數(shù)的解析式為 ( 。

A.y=-x2B.y=-2x4

C.yx2D.y=-x2y=-2x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EFFD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點A逆時針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足  關(guān)系時,仍有EF=BE+FD;請證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°BAD=150°,道路BCCD上分別有景點E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得,.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.

(1)將的頂點移到矩形的頂點處,再將三角形繞點順時針旋轉(zhuǎn)使點落在邊上,此時,恰好經(jīng)過點(如圖),請你求出的長度;

(2)在(1)的條件下,小明先將三角形的邊和矩形邊重合,然后將沿直線向右平移,至點與重合時停止.在平移過程中,設(shè)點平移的距離為,兩紙片重疊部分面積為,求在平移的整個過程中,的函數(shù)關(guān)系式,并求當重疊部分面積為時,平移距離的值(如圖).

查看答案和解析>>

同步練習冊答案