【題目】已知二次函數(shù)y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對于拋物線C1,以下結論正確的是 ;
①對稱軸是:直線x=1;②頂點坐標(1,﹣a﹣2);③拋物線一定經(jīng)過兩個定點.
(2)當a>0時,設△ABM的面積為S,求S與a的函數(shù)關系;
(3)將二次函數(shù)y=ax2﹣2ax﹣2的圖象C1繞點P(t,﹣2)旋轉180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N.
①當﹣2≤x≤1時,旋轉前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;
②當a=1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.
【答案】(1)①②③;(2)S=a(a>0);(3)①;②t=﹣2或1或4.
【解析】
(1)二次函數(shù)y=ax2﹣2ax﹣2的對稱軸為x==1,y=ax2﹣2ax﹣2=a(x2﹣2x)﹣2,即可求解;
(2)由S=S△BMD﹣S△AMD=MD(OC﹣AC),即可求解;
(3)①而x=1和x=m關于P(t,﹣2)中心對稱,所以P到這兩條對稱軸的距離相等,則1﹣t=t﹣m,m=2t﹣1,且:2t﹣1≤﹣2,即可求解;②分t≤1、t>1兩種情況求解即可.
解:(1)二次函數(shù)y=ax2﹣2ax﹣2的對稱軸為x==1,
當x=1時,y=﹣a﹣2;
y=ax2﹣2ax﹣2=a(x2﹣2x)﹣2,即當x=0或2時,拋物線過定點,即(0,﹣2)、(2,﹣2),
故答案為:①②③;
(2)由拋物線的頂點公式求得:頂點M(1,﹣a﹣2)
當x=1時,y=2×1﹣a=2﹣a,求得:D(1,2﹣a)
當y=0時,0=2x﹣a,x=a,求得:A(a/2,0)
∴DM=2﹣a﹣(﹣a﹣2)=4,
S=S△BMD﹣S△AMD=MD(OC﹣AC)=×4×a=a(a>0),
(3)①當﹣2≤x≤1時,
C1的y的值都會隨x的增大而減小,而C1的對稱軸為x=1,
﹣2≤x≤1在對稱軸的左側,C1開口向上,所以a>0;
同時C2的開口向下,而又要當﹣2≤x≤1時y的值都會隨x的增大而減小,
所以﹣2≤x≤1要在C2的對稱軸右側,
令C2的對稱軸為x=m,則m≤﹣2,
而x=1和x=m關于P(t,﹣2)中心對稱,所以P到這兩條對稱軸的距離相等,
所以:1﹣t=t﹣m,m=2t﹣1,且:2t﹣1≤﹣2,即:;
②當a=1時,M(1,﹣3),作PE⊥CM于E,將Rt△PME繞P旋轉180°,得到Rt△PQF,
則△MPQ為等腰直角三角形,因為N、Q′是中心對稱點,所以四邊形MQNQ′為正方形.
第一種情況,當t≤1時,
PE=PF=1﹣t,ME=QF=1,CE=2,
∴Q(t+1,﹣t﹣1),
把Q(t+1,﹣t﹣1)代入y=x2﹣2x﹣2
﹣t﹣1=(t+1)2﹣2(t+1)﹣2,
t2+t﹣2=0,
解得:t1=1,t2=﹣2;
第二種情況,當t>1時,
PE=PE=t﹣1,ME=QF=1,CE=2,
∴Q(t﹣1,t﹣3)代入:y=x2﹣2x﹣2,
t﹣3=(t﹣1)2﹣2(t﹣1)﹣2,
t2﹣5t+4=0,
解得:t1=1 (舍去),t2=4
綜上:t=﹣2或1或4.
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,拋物線與軸交于兩點(點在點左側),與軸交于點,頂點為.
(1)如圖,直線下方拋物線上的一個動點(不與點重合),過點作于點,當最大時,點為線段一點(不與點重合),當的值最小時,求點的坐標;
(2)將沿直線翻折得,再將繞著點順時針旋轉得,在旋轉過程中直線與直線相交于點,與軸相交于點,當是等腰三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:數(shù)學課上,老師出示了這樣一個問題:
如圖1,在等邊中,點、在上,且,直線交于點,交延長線于點,且,探究線段之間的數(shù)量關系,并證明.
某學習小組的同學經(jīng)過思考,交流了自己的想法:
小明:“通過觀察和度量,發(fā)現(xiàn)與存在某種數(shù)量關系”;
小強:“通過觀察和度量,發(fā)現(xiàn)圖1中有一條線段與相等”;
小偉:“通過構造三角形,證明三角形全等,進而可以得到線段之間的數(shù)量關系”.
……
老師:“保留原題條件,再過點作交于與相交于點(如圖2)如果給出的值,那么可以求出的值”.
請回答:
(1)在圖1中找出與數(shù)量關系,并證明;
(2)在圖1中找出與線段相等的線段,并證明;
(3)探究線段之間的數(shù)量關系,并證明;
(4)若,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法錯誤的是( 。
A.這棟居民樓共有居民125人
B.每周使用手機支付次數(shù)為28~35次的人數(shù)最多
C.有的人每周使用手機支付的次數(shù)在35~42次
D.每周使用手機支付不超過21次的有15人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,某學校倡導全校1200名學生進行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取部分學生調查“一周詩詞誦背數(shù)量”,根調查結果繪制成的統(tǒng)計圖(部分)如圖所示.
大賽結束后一個月,再次抽查這部分學生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調查的信息
(1)活動啟動之初學生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形的邊長為3,點,分別在射線,上運動,且.連接,作所在直線于點,連接.
(1)如圖1,若點是的中點,與之間的數(shù)量關系是______;
(2)如圖2,當點在邊上且不是的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當點,分別在射線,上運動時,連接,過點作直線的垂線,交直線于點,連接,求線段長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,為上一動點,點從點以1個單位/秒的速度向點運動,遠動到點即停止,經(jīng)過點作,交于點,以為一邊在一側作正方形,在點運動過程中,設正方形與的重疊面積為,運動時間為秒,如圖2是與的函數(shù)圖象.
(1)求的長;
(2)求的值;
(3)求與的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的方程
(1)求證:m取任何值時,方程總有實根.
(2)若二次函數(shù)的圖像關于y軸對稱.
a、求二次函數(shù)的解析式
b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應的函數(shù)值均成立.
(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應的函數(shù)值均成立,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,點為上一點,點是半徑上一動點(不與,重合),過點作射線,分別交弦,于,兩點,在射線上取點,使.
(1)求證:是的切線;
(2)當點是的中點時,
①若,判斷以,,,為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com