【題目】已知二次函數(shù)y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點(diǎn)為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對(duì)于拋物線C1,以下結(jié)論正確的是 ;
①對(duì)稱軸是:直線x=1;②頂點(diǎn)坐標(biāo)(1,﹣a﹣2);③拋物線一定經(jīng)過兩個(gè)定點(diǎn).
(2)當(dāng)a>0時(shí),設(shè)△ABM的面積為S,求S與a的函數(shù)關(guān)系;
(3)將二次函數(shù)y=ax2﹣2ax﹣2的圖象C1繞點(diǎn)P(t,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點(diǎn)為N.
①當(dāng)﹣2≤x≤1時(shí),旋轉(zhuǎn)前后的兩個(gè)二次函數(shù)y的值都會(huì)隨x的增大而減小,求t的取值范圍;
②當(dāng)a=1時(shí),點(diǎn)Q是拋物線C1上的一點(diǎn),點(diǎn)Q在拋物線C2上的對(duì)應(yīng)點(diǎn)為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請(qǐng)說明理由.
【答案】(1)①②③;(2)S=a(a>0);(3)①;②t=﹣2或1或4.
【解析】
(1)二次函數(shù)y=ax2﹣2ax﹣2的對(duì)稱軸為x==1,y=ax2﹣2ax﹣2=a(x2﹣2x)﹣2,即可求解;
(2)由S=S△BMD﹣S△AMD=MD(OC﹣AC),即可求解;
(3)①而x=1和x=m關(guān)于P(t,﹣2)中心對(duì)稱,所以P到這兩條對(duì)稱軸的距離相等,則1﹣t=t﹣m,m=2t﹣1,且:2t﹣1≤﹣2,即可求解;②分t≤1、t>1兩種情況求解即可.
解:(1)二次函數(shù)y=ax2﹣2ax﹣2的對(duì)稱軸為x==1,
當(dāng)x=1時(shí),y=﹣a﹣2;
y=ax2﹣2ax﹣2=a(x2﹣2x)﹣2,即當(dāng)x=0或2時(shí),拋物線過定點(diǎn),即(0,﹣2)、(2,﹣2),
故答案為:①②③;
(2)由拋物線的頂點(diǎn)公式求得:頂點(diǎn)M(1,﹣a﹣2)
當(dāng)x=1時(shí),y=2×1﹣a=2﹣a,求得:D(1,2﹣a)
當(dāng)y=0時(shí),0=2x﹣a,x=a,求得:A(a/2,0)
∴DM=2﹣a﹣(﹣a﹣2)=4,
S=S△BMD﹣S△AMD=MD(OC﹣AC)=×4×a=a(a>0),
(3)①當(dāng)﹣2≤x≤1時(shí),
C1的y的值都會(huì)隨x的增大而減小,而C1的對(duì)稱軸為x=1,
﹣2≤x≤1在對(duì)稱軸的左側(cè),C1開口向上,所以a>0;
同時(shí)C2的開口向下,而又要當(dāng)﹣2≤x≤1時(shí)y的值都會(huì)隨x的增大而減小,
所以﹣2≤x≤1要在C2的對(duì)稱軸右側(cè),
令C2的對(duì)稱軸為x=m,則m≤﹣2,
而x=1和x=m關(guān)于P(t,﹣2)中心對(duì)稱,所以P到這兩條對(duì)稱軸的距離相等,
所以:1﹣t=t﹣m,m=2t﹣1,且:2t﹣1≤﹣2,即:;
②當(dāng)a=1時(shí),M(1,﹣3),作PE⊥CM于E,將Rt△PME繞P旋轉(zhuǎn)180°,得到Rt△PQF,
則△MPQ為等腰直角三角形,因?yàn)?/span>N、Q′是中心對(duì)稱點(diǎn),所以四邊形MQNQ′為正方形.
第一種情況,當(dāng)t≤1時(shí),
PE=PF=1﹣t,ME=QF=1,CE=2,
∴Q(t+1,﹣t﹣1),
把Q(t+1,﹣t﹣1)代入y=x2﹣2x﹣2
﹣t﹣1=(t+1)2﹣2(t+1)﹣2,
t2+t﹣2=0,
解得:t1=1,t2=﹣2;
第二種情況,當(dāng)t>1時(shí),
PE=PE=t﹣1,ME=QF=1,CE=2,
∴Q(t﹣1,t﹣3)代入:y=x2﹣2x﹣2,
t﹣3=(t﹣1)2﹣2(t﹣1)﹣2,
t2﹣5t+4=0,
解得:t1=1 (舍去),t2=4
綜上:t=﹣2或1或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),頂點(diǎn)為.
(1)如圖,直線下方拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),過點(diǎn)作于點(diǎn),當(dāng)最大時(shí),點(diǎn)為線段一點(diǎn)(不與點(diǎn)重合),當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);
(2)將沿直線翻折得,再將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得,在旋轉(zhuǎn)過程中直線與直線相交于點(diǎn),與軸相交于點(diǎn),當(dāng)是等腰三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:數(shù)學(xué)課上,老師出示了這樣一個(gè)問題:
如圖1,在等邊中,點(diǎn)、在上,且,直線交于點(diǎn),交延長(zhǎng)線于點(diǎn),且,探究線段之間的數(shù)量關(guān)系,并證明.
某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:
小明:“通過觀察和度量,發(fā)現(xiàn)與存在某種數(shù)量關(guān)系”;
小強(qiáng):“通過觀察和度量,發(fā)現(xiàn)圖1中有一條線段與相等”;
小偉:“通過構(gòu)造三角形,證明三角形全等,進(jìn)而可以得到線段之間的數(shù)量關(guān)系”.
……
老師:“保留原題條件,再過點(diǎn)作交于與相交于點(diǎn)(如圖2)如果給出的值,那么可以求出的值”.
請(qǐng)回答:
(1)在圖1中找出與數(shù)量關(guān)系,并證明;
(2)在圖1中找出與線段相等的線段,并證明;
(3)探究線段之間的數(shù)量關(guān)系,并證明;
(4)若,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小文同學(xué)統(tǒng)計(jì)了某棟居民樓中全體居民每周使用手機(jī)支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法錯(cuò)誤的是( 。
A.這棟居民樓共有居民125人
B.每周使用手機(jī)支付次數(shù)為28~35次的人數(shù)最多
C.有的人每周使用手機(jī)支付的次數(shù)在35~42次
D.每周使用手機(jī)支付不超過21次的有15人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示.
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計(jì)表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請(qǐng)根據(jù)調(diào)查的信息
(1)活動(dòng)啟動(dòng)之初學(xué)生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評(píng)價(jià)該校經(jīng)典詩詞誦背系列活動(dòng)的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長(zhǎng)為3,點(diǎn),分別在射線,上運(yùn)動(dòng),且.連接,作所在直線于點(diǎn),連接.
(1)如圖1,若點(diǎn)是的中點(diǎn),與之間的數(shù)量關(guān)系是______;
(2)如圖2,當(dāng)點(diǎn)在邊上且不是的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點(diǎn),分別在射線,上運(yùn)動(dòng)時(shí),連接,過點(diǎn)作直線的垂線,交直線于點(diǎn),連接,求線段長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)以1個(gè)單位/秒的速度向點(diǎn)運(yùn)動(dòng),遠(yuǎn)動(dòng)到點(diǎn)即停止,經(jīng)過點(diǎn)作,交于點(diǎn),以為一邊在一側(cè)作正方形,在點(diǎn)運(yùn)動(dòng)過程中,設(shè)正方形與的重疊面積為,運(yùn)動(dòng)時(shí)間為秒,如圖2是與的函數(shù)圖象.
(1)求的長(zhǎng);
(2)求的值;
(3)求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程
(1)求證:m取任何值時(shí),方程總有實(shí)根.
(2)若二次函數(shù)的圖像關(guān)于y軸對(duì)稱.
a、求二次函數(shù)的解析式
b、已知一次函數(shù),證明:在實(shí)數(shù)范圍內(nèi),對(duì)于同一x值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立.
(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)為上一點(diǎn),點(diǎn)是半徑上一動(dòng)點(diǎn)(不與,重合),過點(diǎn)作射線,分別交弦,于,兩點(diǎn),在射線上取點(diǎn),使.
(1)求證:是的切線;
(2)當(dāng)點(diǎn)是的中點(diǎn)時(shí),
①若,判斷以,,,為頂點(diǎn)的四邊形是什么特殊四邊形,并說明理由;
②若,且,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com