【題目】如圖,∠PAC=30°,在射線AC上順次截取AD=3cm,DB=10cm,以DB為直徑作⊙O交射線AP于E、F兩點,則線段EF的長是cm.

【答案】6
【解析】解:過O點作OH⊥EF于H,連OF,如圖

則EH=FH,
在Rt△AOH中,AO=AD+OD=3+5=8,∠A=30°,
則OH= OA=4,
在Rt△OHF中,OH=4,OF=5,
則HF= =3,
則EF=2HF=6cm.
所以答案是6.
【考點精析】關于本題考查的含30度角的直角三角形和勾股定理的概念,需要了解在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點,作,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是(

EF=CF

A. ①②③ B. ①② C. ②③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小正方形的邊長都是1.A、B、C三點都在格點上.

(1)請你以格線所在直線為坐標軸建立平面直角坐標系,使A、B兩點的坐標分別為A(﹣2,3),B(﹣3,1),并寫出C點坐標;
(2)連接AB、BC、CA得△ABC,將△ABC向右平移4個單位,畫出平移后的△A1B1C1
(3)將△A1B1C1繞點B1按順時針方向旋轉90°,畫出旋轉后的△A2B1C2 , 并求出在旋轉過程中線段A1B1所掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△PAB的邊PA、PB上分別取點C、D,連接CD使CD∥AB.將△PCD繞點P按逆時針方向旋轉得到△PC′D′(∠APC′<∠APB),連接AC′、BD′.

(1)如圖1, 若∠APB=90°,PA=PB,求證:AC′=BD′;AC′⊥BD′.

(2)在圖1中,連接AD′、BC′,分別取AB、AD′、C′D′、BC′的中點E、F、G、H,順次連接E、F、G、H得到四邊形EFGH.請判斷四邊形EFGH的形狀,并說明理由.
(3)①如圖2, 若改變(1)中∠APB的大小,使0°<∠APB<90°,其他條件不變,重復(2)中操作.請你直接判斷四邊形EFGH的形狀.

②如圖3,若改變(1)中PA、PB的大小關系,使PA<PB,其他條件不變,重復(2)中操作,請你直接判斷是四邊形EFGH的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)3﹣(+2)﹣(﹣2)﹣(﹣0.75);

(2)(+)×(﹣78);

(3)(﹣)÷(1);

(4)﹣32﹣2÷×[2﹣(﹣2]﹣(﹣2)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產部統(tǒng)計了15名工人某月的加工零件數(shù):

每人加工零件數(shù)

540

450

300

240

210

120

人數(shù)

1

1

2

6

3

2

(1)求出這15人該月加工零件數(shù)的平均數(shù)并直接寫出中位數(shù)和眾數(shù);

(2)若生產部領導把每位工人的月加工零件數(shù)定為260件,你認為合理否,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉動的轉盤被平均分成五個扇形,五個扇形內部分別標有數(shù)字.﹣2、3、﹣4、5.若將轉盤轉動兩次,每一次停止轉動后,指針指向的扇形內的數(shù)字分別記為m,n(當指針指在邊界線時視為無效,重轉),從而確定一個點的坐標為A(m,n).請用列表或者畫樹狀圖的方法求出所有可能得到的點A的坐標,并求出點A在第一象限內的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙每個小方格是邊長為1個單位長度的正方形,在平面直角坐標系中,點A(1,0),B(5,0),C(a,b)D(1,4).

(1)描出A、B、C、D四點的位置.如圖,則a=  ;b=  ;

(2)四邊形ABCD的面積是  ;(直接寫出結果)

(3)把四邊形ABCD向左平移6個單位,再向下平移1個單位得到四邊形A'B'C'D',在圖中畫出四邊形A'B'C'D',并寫出A'B'C'D'的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形紙片ABCD中,,,將紙片折疊,使CD落在AB邊上的,處,折痕為MN,則______.

查看答案和解析>>

同步練習冊答案