【題目】已知:如圖,一塊Rt△ABC的綠地,量得兩直角邊AC=8cm,BC=6cm.現(xiàn)在要將這塊綠地?cái)U(kuò)充成等腰△ABD,且擴(kuò)充部分(△ADC)是以8cm為直角邊長(zhǎng)的直角三角形,求擴(kuò)充等腰△ABD的周長(zhǎng).
(1)在圖1中,當(dāng)AB=AD=10cm時(shí),△ABD的周長(zhǎng)為 .
(2)在圖2中,當(dāng)BA=BD=10cm時(shí),△ABD的周長(zhǎng)為 .
(3)在圖3中,當(dāng)DA=DB時(shí),求△ABD的周長(zhǎng).
【答案】(1)32m;(2)(20+4)m;(3)
【解析】
(1)利用勾股定理得出DC的長(zhǎng),進(jìn)而求出△ABD的周長(zhǎng);
(2)利用勾股定理得出AD的長(zhǎng),進(jìn)而求出△ABD的周長(zhǎng);
(3)首先利用勾股定理得出DC、AB的長(zhǎng),進(jìn)而求出△ABD的周長(zhǎng).
:(1)如圖1,∵AB=AD=10m,AC⊥BD,AC=8m,
∴
則△ABD的周長(zhǎng)為:10+10+6+6=32(m).
故答案為:32m;
(2)如圖2,當(dāng)BA=BD=10m時(shí),
則DC=BD-BC=10-6=4(m),
故
則△ABD的周長(zhǎng)為:AD+AB+BD=10+4+10=(20+4)m;
故答案為:(20+4)m;
(3)如圖3,∵DA=DB,
∴設(shè)DC=xm,則AD=(6+x)m,
∴DC2+AC2=AD2,
即x2+82=(6+x)2,
解得;x=
∵AC=8m,BC=6m,
∴AB=10m,
故△ABD的周長(zhǎng)為:AD+BD+AB=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益”,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅(jiān)階段.某校擬整修學(xué)校食堂,現(xiàn)需購(gòu)買A、B兩種型號(hào)的防滑地磚共60塊,已知A型號(hào)地磚每塊80元,B型號(hào)地磚每塊40元.
(1)若采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么,最多能購(gòu)買A型號(hào)地磚多少塊?
(2)某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號(hào)的地磚單價(jià)都降低a%,這樣,該;ㄙM(fèi)了2560元就購(gòu)得所需地磚,其中A型號(hào)地磚a塊,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當(dāng)a為何值時(shí),方程僅有一個(gè)根?求出此時(shí)a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過(guò)點(diǎn)A作AM⊥BD于點(diǎn)M,過(guò)點(diǎn)D作DN⊥AB于點(diǎn)N,且DN=,在DB的延長(zhǎng)線上取一點(diǎn)P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長(zhǎng)是8cm.
求:(1)兩條對(duì)角線的長(zhǎng)度;(2)菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( 。
(1)有理數(shù)分為正有理數(shù)和負(fù)有理數(shù)
(2)如果|a|=a,那么a>0
(3)如果a大于b,那么a的倒數(shù)小于b的倒數(shù)
(4)若ab>0,則的值為3或﹣3
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知張強(qiáng)家、體育場(chǎng)、文具店在同一直線上,下面的圖象反映的過(guò)程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家.圖中表示時(shí)間,表示張強(qiáng)離家的距離.
根據(jù)圖象解答下列問(wèn)題:
(1)體育場(chǎng)離張強(qiáng)家多遠(yuǎn)?張強(qiáng)從家到體育場(chǎng)用了多少時(shí)間?
(2)體育場(chǎng)離文具店多遠(yuǎn)?
(3)張強(qiáng)在文具店停留了多少時(shí)間?
(4)求張強(qiáng)從文具店回家過(guò)程中與的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)E、F分別為AD、DC上的動(dòng)點(diǎn),∠EBF=60°,點(diǎn)E從點(diǎn)A向點(diǎn)D運(yùn)動(dòng)的過(guò)程中,AE+CF的長(zhǎng)度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長(zhǎng)度相等 D. 保持不變且與AB的長(zhǎng)度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC是直徑,BC=BA,在∠ACB的內(nèi)部作∠ACF=30°,且CF=CA,過(guò)點(diǎn)F作FH⊥AC于點(diǎn)H,連接BF.
(1)若CF交⊙O于點(diǎn)G,⊙O的半徑是4,求 的長(zhǎng);
(2)請(qǐng)判斷直線BF與⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com