【題目】在平面直角坐標(biāo)系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點(diǎn),其中t>0,函數(shù)的圖象分別與線段BC,AC交于點(diǎn)P,Q.若SPAB-SPQB=t,則t的值為__

【答案】4

【解析】

用t分別表示出SPAB和SPQB 即可求解.

解:如圖所示,

A(2t,0),C(2t,4t),

ACx軸,

當(dāng)x=2t時(shí),y=,

Q(2t,),

B(0,﹣2t),C(2t,4t),

易得直線BC的解析式為:y=3x﹣2t,

則3x﹣2t=,

解得:x1=t,x2=(舍),

P(t,t),

SPAB=SBAC﹣SAPC,SPQB=SBAC﹣SABQ﹣SPQC,

SPAB﹣SPQB=t,

(SBAC﹣SAPC)﹣(SBAC﹣SABQ﹣SPQC)=t,

SABQ+SPQC﹣SAPC=,

t=4,

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生對以下四個(gè)電視節(jié)目:最強(qiáng)大腦、中國詩詞大會(huì)、朗讀者、出彩中國人的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)圖中所提供的信息,完成下列問題:

本次調(diào)查的學(xué)生人數(shù)為______;

在扇形統(tǒng)計(jì)圖中,A部分所占圓心角的度數(shù)為______;

請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

若該校共有3000名學(xué)生,估計(jì)該校最喜愛中國詩詞大會(huì)的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是平行四邊形,,若,的長是關(guān)于的一元二次方程的兩個(gè)根,且.

1)直接寫出:______,______;

2)若點(diǎn)軸正半軸上的點(diǎn),且;

①求經(jīng)過,兩點(diǎn)的直線解析式;

②求證:.

3)若點(diǎn)在平面直角坐標(biāo)系內(nèi),則在直線上是否存在點(diǎn),使以,,為頂點(diǎn)的四邊形為菱形?若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)

50

60

70

80

銷售量y(千克)

100

90

80

70

1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

如圖1.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,可以得到:

證明:過點(diǎn)AADBC,垂足為D

RtABD中,

同理:

1)通過上述材料證明:

2)運(yùn)用(1)中的結(jié)論解決問題:

如圖2,在中,,求AC的長度.

3)如圖3,為了開發(fā)公路旁的城市荒地,測量人員選擇A、B、C三個(gè)測量點(diǎn),在B點(diǎn)測得A在北偏東75°方向上,沿筆直公路向正東方向行駛18km到達(dá)C點(diǎn),測得A在北偏西45°方向上,根據(jù)以上信息,求A、BC三點(diǎn)圍成的三角形的面積.

(本題參考數(shù)值:sin15°≈0.3,sin120°≈0.91.4,結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+2x+ca0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OBOC3

1)求該拋物線的函數(shù)解析式;

2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD,ODBC于點(diǎn)F,當(dāng)SCOFSCDF32時(shí),求點(diǎn)D的坐標(biāo).

3)如圖2,點(diǎn)E的坐標(biāo)為(0,),在拋物線上是否存在點(diǎn)P,使∠OBP2OBE?若存在,請直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行

銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))于銷售單價(jià)x(

/個(gè))之間的對應(yīng)關(guān)系如圖所示.

(1)試判斷yx之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)若許愿瓶的進(jìn)價(jià)為6/個(gè),按照上述市場調(diào)查銷售規(guī)律,求利潤w()與銷售單價(jià)x(/個(gè))之間的

函數(shù)關(guān)系式;

(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試求此時(shí)這種許愿瓶的銷售單價(jià),并求出

最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形,,拋物線為常數(shù)),頂點(diǎn)為

1)拋物線經(jīng)過定點(diǎn)坐標(biāo)是___ __,頂點(diǎn)的坐標(biāo)(的代數(shù)式表示)____ _

2)若拋物線(為常數(shù))與正方形的邊有交點(diǎn),則的取值范圍是___ _

3)若時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸于AB兩點(diǎn),交y軸于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(10)

1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);

2)連結(jié)CA與拋物線的對稱軸交于點(diǎn)D

①在對稱軸上找一點(diǎn)P,使ΔAPC為直角三角形,求點(diǎn)P的坐標(biāo).

②在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案