【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的邊長為( )
A.2
B.4
C.4
D.8
【答案】B
【解析】解:∵AE為∠DAB的平分線,
∴∠DAE=∠BAE,
∵DC∥AB,
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,
又F為DC的中點,
∴DF=CF,
∴AD=DF=DC=AB=2,
在Rt△ADG中,根據(jù)勾股定理得:AG= ,
則AF=2AG=2 ,
∵平行四邊形ABCD,
∴AD∥BC,
∴∠DAF=∠E,∠ADF=∠ECF,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴AF=EF,
則AE=2AF=4 .
故選:B
由AE為角平分線,得到一對角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,等量代換及 等角對等邊得到AD=DF,由F為DC中點,AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點,在直角三角 形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進而求出AF的長,再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把順次連接任意一個四邊形各邊中點所得的四邊形叫做中點四邊形.已知四邊形ABCD的中點四邊形是正方形,對角線AC與BD的關(guān)系,下列說法正確的是( 。
A. AC,BD相等且互相平分B. AC,BD垂直且互相平分
C. AC,BD相等且互相垂直D. AC,BD垂直且平分對角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列投影一定不會改變△ABC的形狀和大小的是( )
A.中心投影
B.平行投影
C.正投影
D.當(dāng)△ABC平行投影面時的平行投影
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 10 | 5 | 2 | 1 | 2 | 5 | … |
若A(m,y1),B(m﹣2,y2)兩點都在該函數(shù)的圖象上,當(dāng)m=時,y1=y2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級350名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中若干名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
請根據(jù)所給信息,解答下列問題:
(1)a= ,b= ;
(2)請補全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在 分數(shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該年級參加這次比賽的350名學(xué)生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com