【題目】2017天水)下列說法正確的是(
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500次

【答案】A
【解析】解:A、不可能事件發(fā)生的概率為0,故本選項正確; B、隨機事件發(fā)生的概率P為0<P<1,故本選項錯誤;
C、概率很小的事件,不是不發(fā)生,而是發(fā)生的機會少,故本選項錯誤;
D、投擲一枚質(zhì)地均勻的硬幣1000次,是隨機事件,正面朝上的次數(shù)不確定是多少次,故本選項錯誤;
故選A.
【考點精析】本題主要考查了概率的意義的相關(guān)知識點,需要掌握任何事件的概率是0~1之間的一個確定的數(shù),它度量該事情發(fā)生的可能性.小概率事件很少發(fā)生,而大概率事件則經(jīng)常發(fā)生.知道隨機事件的概率有利于我們作出正確的決策才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過對角線BD上一點P作EF∥BC,GH∥AB,且CG=2BG,SBPG=1,則SAEPH=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙M的圓心M(﹣1,2),⊙M經(jīng)過坐標原點O,與y軸交于點A,經(jīng)過點A的一條直線l解析式為:y=﹣ x+4與x軸交于點B,以M為頂點的拋物線經(jīng)過x軸上點D(2,0)和點C(﹣4,0).

(1)求拋物線的解析式;
(2)求證:直線l是⊙M的切線;
(3)點P為拋物線上一動點,且PE與直線l垂直,垂足為E,PF∥y軸,交直線l于點F,是否存在這樣的點P,使△PEF的面積最。咳舸嬖,請求出此時點P的坐標及△PEF面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生的體重情況,隨機抽取了九年級部分學生進行調(diào)查,將抽取學生的體重情況繪制如下不完整的統(tǒng)計圖表,如圖表所示,請根據(jù)圖標信息回答下列問題: 體重頻數(shù)分布表

組邊

體重(千克)

人數(shù)

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16


(1)填空:①m=(直接寫出結(jié)果); ②在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于度;
(2)如果該校九年級有1000名學生,請估算九年級體重低于60千克的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
頻數(shù)頻率分布表

成績x(分)

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

根據(jù)所給信息,解答下列問題:

(1)m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)這200名學生成績的中位數(shù)會落在分數(shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論: ①abc>0;②方程ax2+bx+c=3有兩個相等的實數(shù)根;③拋物線與x軸的另一個交點是(﹣1,0);④當1<x<4時,有y2>y1;⑤x(ax+b)≤a+b,其中正確的結(jié)論是 . (只填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9時BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請用直尺和圓規(guī)在所給的兩個矩形中各作一個不為正方形的菱形,且菱形的四個頂點都在矩形的邊上,面積相同的圖形視為同一種.(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,一次函數(shù)y=kx﹣k與反比例函數(shù)y= (k≠0)的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案