【題目】如圖是拋物線y1=ax2+bx+c(a≠0)的圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,3),與x軸的一個(gè)交點(diǎn)是B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①abc>0;②方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;③拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);④當(dāng)1<x<4時(shí),有y2>y1;⑤x(ax+b)≤a+b,其中正確的結(jié)論是 . (只填寫(xiě)序號(hào))

【答案】②⑤
【解析】解:由圖象可知:a<0,b>0,c>0,故abc<0,故①錯(cuò)誤. 觀察圖象可知,拋物線與直線y=3只有一個(gè)交點(diǎn),故方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,故②正確.
根據(jù)對(duì)稱(chēng)性可知拋物線與x軸的另一個(gè)交點(diǎn)是(﹣2,0),故③錯(cuò)誤,
觀察圖象可知,當(dāng)1<x<4時(shí),有y2<y1 , 故④錯(cuò)誤,
因?yàn)閤=1時(shí),y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正確,
所以②⑤正確,
所以答案是②⑤.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx(k為常數(shù),k≠0)與雙曲線y= (m為常數(shù),m>0)的交點(diǎn)為A、B,AC⊥x軸于點(diǎn)C,∠AOC=30°,OA=2
(1)求m、k的值;
(2)點(diǎn)P在y軸上,如果SABP=3k,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD的邊長(zhǎng)為6,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】美麗的黃河宛如一條玉帶穿城而過(guò),沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017天水)下列說(shuō)法正確的是(
A.不可能事件發(fā)生的概率為0
B.隨機(jī)事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500次

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)75°,點(diǎn)E的對(duì)應(yīng)點(diǎn)N恰好落在OA上,則 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=2,點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、點(diǎn)B重合),點(diǎn)Q在邊AD上,將△CBP和△QAP分別沿PC、PQ折疊,使B點(diǎn)與E點(diǎn)重合,A點(diǎn)與F點(diǎn)重合,且P、E、F三點(diǎn)共線.

(1)若點(diǎn)E平分線段PF,則此時(shí)AQ的長(zhǎng)為多少?
(2)若線段CE與線段QF所在的平行直線之間的距離為2,則此時(shí)AP的長(zhǎng)為多少?
(3)在“線段CE”、“線段QF”、“點(diǎn)A”這三者中,是否存在兩個(gè)在同一條直線上的情況?若存在,求出此時(shí)AP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下50件按八折優(yōu)惠賣(mài)出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案