【題目】如圖,一次函數(shù)y=-x+m的圖象和y軸交于點(diǎn)B,與正比例函數(shù)y=x圖象交于點(diǎn)P 2,n).

1)求mn的值;

2)求POB的面積.

【答案】1mn的值分別為4,2;(24.

【解析】試題分析: 1P(2,n)代入y=xn=2,所以P點(diǎn)坐標(biāo)為(2,2),然后把P點(diǎn)坐標(biāo)代入y=x+m,可計(jì)算出的值;
2)先利用一次函數(shù)解析式確定B點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解.

試題解析:(1)P(2,n)代入y=xn=2,

所以P點(diǎn)坐標(biāo)為(2,2),

P(2,3)代入y=x+m2+m=2,解得m=4,

mn的值分別為4,2

(2)x=0代入y=x+4y=4,

所以B點(diǎn)坐標(biāo)為(0,4),

所以△POB的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在函數(shù)y= (k>0,x>0)的圖象上點(diǎn)P(m,n)是函數(shù)圖象上任意一點(diǎn),過(guò)點(diǎn)P分別作x軸y軸的垂線(xiàn),垂足分別為E,F(xiàn).并設(shè)矩形OEPF和正方形OABC不重合的部分的面積為S.
(1)求k的值;
(2)當(dāng)S= 時(shí),求P點(diǎn)的坐標(biāo);
(3)寫(xiě)出S關(guān)于m的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)角的余角的度數(shù)是 30°15′,那么這個(gè)角的補(bǔ)角的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:線(xiàn)段、

求作:ABC,使, ;

【答案】答案見(jiàn)解析

【解析】試題分析:先畫(huà)出與相等的角,再畫(huà)出的長(zhǎng),連接,則即為所求三角形.

試題解析:如圖所示:①先畫(huà)射線(xiàn)BC,

②以α的頂點(diǎn)為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交α的兩邊交于為A′,C;

③以相同長(zhǎng)度為半徑,B為圓心,畫(huà)弧,BC于點(diǎn)F,F為圓心,CA為半徑畫(huà)弧,交于點(diǎn)E

④在BF上取點(diǎn)C,使CB=a,以B為圓心,c為半徑畫(huà)圓交BE的延長(zhǎng)線(xiàn)于點(diǎn)A,連接AC,

結(jié)論:△ABC即為所求三角形.

型】解答
結(jié)束】
15

【題目】已知:線(xiàn)段 ,求作: ,使,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):A0,3);B5,0);C3,-5);D-3,-5);E35);

2連接CE,則直線(xiàn)CEy軸是什么位置關(guān)系?

3點(diǎn)D分別到x、y軸的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出一個(gè)只含有兩個(gè)字母,且次數(shù)為3的單項(xiàng)式_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線(xiàn)y=axa為拋物線(xiàn)ab、c為常數(shù),a0)的“夢(mèng)想直線(xiàn)”;有一個(gè)頂點(diǎn)在拋物線(xiàn)上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.

已知拋物線(xiàn)與其“夢(mèng)想直線(xiàn)”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線(xiàn)的“夢(mèng)想直線(xiàn)”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)如圖,點(diǎn)M為線(xiàn)段CB上一動(dòng)點(diǎn),將△ACMAM所在直線(xiàn)為對(duì)稱(chēng)軸翻折,點(diǎn)C的對(duì)稱(chēng)點(diǎn)為N,若△AMN為該拋物線(xiàn)的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),在該拋物線(xiàn)的“夢(mèng)想直線(xiàn)”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、EF為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長(zhǎng)相等.

1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過(guò)點(diǎn)C,連接DEAF于點(diǎn)M,觀(guān)察發(fā)現(xiàn):點(diǎn)MDE的中點(diǎn).

下面是兩位學(xué)生有代表性的證明思路:

思路1:不需作輔助線(xiàn),直接證三角形全等;

思路2:不證三角形全等,連接BDAF于點(diǎn)H.…

請(qǐng)參考上面的思路,證明點(diǎn)MDE的中點(diǎn)(只需用一種方法證明);

2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時(shí),延長(zhǎng)AD、EF交于點(diǎn)N,求的值;

3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,分別延長(zhǎng)△ABC的邊AB,AC到D,E,∠CBD與∠BCE的平分線(xiàn)相交于點(diǎn)P,愛(ài)動(dòng)腦筋的小明在寫(xiě)作業(yè)時(shí)發(fā)現(xiàn)如下規(guī)律:

①若∠A=50°,則∠P=65°=90°- ;

②若∠A=90°,則∠P=45°=90°-

③若∠A=100°,則∠P=40°=90°- .

(1)根據(jù)上述規(guī)律,若∠A=150°,則∠P=________;

(2)請(qǐng)你用數(shù)學(xué)表達(dá)式寫(xiě)出∠P與∠A的關(guān)系;

(3)請(qǐng)說(shuō)明(2)中結(jié)論的正確性.

查看答案和解析>>

同步練習(xí)冊(cè)答案