【題目】滿足下列條件的四邊形不是正方形的是( )
A. 對(duì)角線相互垂直的矩形 B. 對(duì)角線相等的菱形
C. 對(duì)角線相互垂直且相等的四邊形 D. 對(duì)角線垂直且相等的平行四邊形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以lcm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿線射BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)當(dāng)t為多少時(shí),四邊形ACFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊長(zhǎng)分別為10,24,26,則最長(zhǎng)邊上的中線長(zhǎng)為( )
A. 14 B. 13 C. 12 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)引入:
如圖1,直線AB為⊙O的弦,OC⊥OA,交AB于點(diǎn)P,且PC=BC,直線BC是否與⊙O相切,為什么?
(2)引申:
如圖2,記(1)中⊙O的切線為直線l,在(1)的條件下,將切線l向下平移,設(shè)平移后的直線l與OB的延長(zhǎng)線相交于點(diǎn)B′,與AB的延長(zhǎng)線相交于點(diǎn)E,與OP的延長(zhǎng)線相交于點(diǎn)C′,找出圖2中與C′P相等的線段,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多邊形的內(nèi)角和等于它的外角和的5倍,則這個(gè)多邊形的邊數(shù)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,以B為圓心,BC長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于D,E兩點(diǎn),并連接BD,DE.若∠A=30°,AB=AC,則∠BDE的度數(shù)為何( 。
A.45 B.52.5 C.67.5 D.75
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙、丙三個(gè)圓柱形容器(容器足夠高),底面面積之比為1:4:1,用兩個(gè)相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現(xiàn)三個(gè)容器中,只有甲中有水,水位高1cm,如圖所示,若每分鐘同時(shí)向乙和丙注入相同量的水,開(kāi)始注水1分鐘,乙的水位上升cm.
求:(1)開(kāi)始注水1分鐘,丙容器的水位上升了多少?
(2)開(kāi)始注入多少分鐘的水量后,甲與乙的水位高度相差0.5cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=﹣3x+5的圖象不經(jīng)過(guò)的象限是第( 。┫笙
A. 一 B. 二 C. 三 D. 四
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com