如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點(diǎn)C.

(1)若∠A=∠AOC,試說明:∠B=∠BOC;

(2)延長AB交x軸于點(diǎn)E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);

(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長線于點(diǎn)P,∠A=40°,當(dāng)△ABO繞O點(diǎn)旋轉(zhuǎn)時(邊AB與y軸正半軸始終相交于點(diǎn)C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.

 

【答案】

⑴見解析(2)30°(3)∠P的度數(shù)不變,∠P=25°,理由見解析

【解析】解⑴∵△AOB是直角三角形  

∴∠A+∠B=90°,∠AOC+∠BOC=90°   

∵∠A=∠AOC     ∴∠B=∠BOC 

     ⑵∵∠A+∠ABO=90°,∠DOB+∠ABO=90°

      ∴∠A=∠DOB        即∠DOB=∠EOB=∠OAE=∠OEA

       ∵∠DOB+∠EOB+∠OEA=90°       ∴∠A=30°

  ⑶∠P的度數(shù)不變,∠P=25°.    

∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC

又OF平分∠AOM,CP平分∠BCO

∴∠FOM=45°-∠AOC,∠PCO=∠A+∠AOC

∴∠P=180°-(∠PCO+∠FOM+90°)=45°-∠A=25°

(1)由直角三角形兩銳角互余及等角的余角相等即可證明;

(2)由直角三角形兩銳角互余、等量代換求得∠DOB=∠EOB=∠OAE=∠E;然后根據(jù)外角定理知∠DOB+∠EOB+∠OEA=90°;從而求得∠DOB=30°,即∠A=30°;

(3)由角平分線的性質(zhì)知∠FOM=45°- ∠AOC ①,∠PCO= ∠A+ ∠AOC ②,根據(jù)①②解得∠PCO+∠FOM=45°+ ∠A,最后根據(jù)三角形內(nèi)角和定理求得旋轉(zhuǎn)后的∠P的度數(shù).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案