【題目】已知三角形ABC在平面直角坐標系中的位置如圖所示.將三角形ABC向右平移6個單位長度,再向下平移6個單位長度得到三角形A1B1C1.(圖中每個小方格邊長均為1個單位長度) .
(1)在圖中畫出平移后的三角形A1B1C1;
(2)求三角形ABC的面積;
(3)直接寫出三角形A1B1C1各頂點的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】依據(jù)下列解方程的過程,請在前面的括號內填寫變形步驟,在后面的括號內填寫變形依據(jù)。
解:原方程可變形為( )
( ),得( )
去括號,得
( ),得( )
合并同類項,得(合并同類項法則)
( ),得( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,矩形 的邊 在 軸上,頂點 在拋物線 上,且拋物線交 軸于另一點 .
(1)則 = , =;
(2)已知 為 邊上一個動點(不與 、 重合),連結 交 于點 ,過點 作 軸的平行線分別交拋物線、直線 于 、 .
①求線段 的最大值,此時 的面積為;
②若以點 為圓心, 為半徑作⊙O,試判斷直線 與⊙O的能否相切,若能請求出 點坐標,若不能請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2.證明:∠DGA+∠BAC=180°.請完成說明過程.
解:∵EF∥AD,(已知)
∴∠2=∠3.( )
又∵∠1=∠2(已知)
∴∠1=∠3,(等量代換)
∴AB∥ ,( )
∴∠DGA+∠BAC=180°.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAC 的角平分線與 BC 的垂直平分線交于點 D,DE⊥AB, DF⊥AC,垂足分別為 E,F(xiàn).若 AB=10,AC=8,求 BE 長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.
你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:
①,又,
,∴能確定59319的立方根是個兩位數(shù).
②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.
①它的立方根是_______位數(shù).
②它的立方根的個位數(shù)是_______.
③它的立方根的十位數(shù)是__________.
④195112的立方根是________.
(2)請直接填寫結果:
①________.
②________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD.
(1)如圖1,若∠A=35°,∠C=48°則∠E= °.
(2)如圖2,若∠E=120°,∠C=110°,求∠A+∠F的度數(shù);
(3)如圖3,若∠E=110°,,若GD∥FC,請直接寫出∠AGF與∠GDC的數(shù)量關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com