【題目】在平面直角坐標(biāo)系內(nèi),以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為  

A. 3 B. 2 C. D.

【答案】D

【解析】

先根據(jù)題意,畫出圖形,令直線y= x+ x軸交于點C,與y軸交于點D,作OHCDH,作OHCDH;

然后根據(jù)坐標(biāo)軸上點的坐標(biāo)特點,由一次函數(shù)解析式,求得CD兩點的坐標(biāo)值;

再在RtPOC中,利用勾股定理可計算出CD的長,并利用面積法可計算出OH的值;

最后連接OA,利用切線的性質(zhì)得OAPA,在RtPOH中,利用勾股定理,得到,并利用垂線段最短求得PA的最小值即可.

如圖, 令直線y=x+x軸交于點C,與y軸交于點D,作OHCDH,

當(dāng)x=0時,y=,則D0),

當(dāng)y=0時,x+=0,解得x=-2,則C-20),

,

OHCD=OCOD,

OH=.

連接OA,如圖,

PA為⊙O的切線,

OAPA

,

當(dāng)OP的值最小時,PA的值最小,

OP的最小值為OH的長,

PA的最小值為.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊,現(xiàn)圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內(nèi)隨機抽取部分村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:

1)這次參與調(diào)查的村民人數(shù)為 人;

2)請將條形統(tǒng)計圖補充完整;

3)求扇形統(tǒng)計圖中“劃龍舟”所在扇形的圓心角的度數(shù);

4)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節(jié)慶典活動,請用列表或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(1,2),B(3,2),連接AB. 若對于平面內(nèi)一點P,線段AB上都存在點Q,使得PQ≤1,則稱點P是線段AB的“臨近點”.

(1)在點C(0,2),D(2,),E(4,1)中,線段AB的“臨近點”是__________;

(2)若點M(mn)在直線上,且是線段AB的“臨近點”,求m的取值范圍;

(3)若直線上存在線段AB的“臨近點”,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃生產(chǎn)一種創(chuàng)新產(chǎn)品,若生產(chǎn)一件這種產(chǎn)品需A種原料1.2千克、B種原料1千克.已知A種原料每千克的價格比B種原料每千克的價格多10元.

(1)為使每件產(chǎn)品的成本價不超過34元,那么購入的B種原料每千克的價格最高不超過多少元?

(2)將這種產(chǎn)品投放市場批發(fā)銷售一段時間后,為拓展銷路又開展了零售業(yè)務(wù),每件產(chǎn)品的零售價比批發(fā)價多30元.現(xiàn)用10000元通過批發(fā)價購買該產(chǎn)品的件數(shù)與用16000元通過零售價購買該產(chǎn)品的件數(shù)相同,那么這種產(chǎn)品的批發(fā)價是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點落在點處,于點,連接

(1)求證:;

(2)求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形組成的8×4網(wǎng)格,每個小正方形的頂點叫做格點,點A,B,C,D均在格點上,在網(wǎng)格中將點D按下列步驟移動:

第一步:點D繞點A順時針旋轉(zhuǎn)180°得到點D1;

第二步:點D1繞點B順時針旋轉(zhuǎn)90°得到點D2

第三步:點D2繞點C順時針旋轉(zhuǎn)90°回到點D.

(1)請用圓規(guī)畫出點D→D1→D2→D經(jīng)過的路徑;

(2)所畫圖形是什么對稱圖形;

(3)求所畫圖形的周長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程 有實數(shù)根.

(1)求的取值范圍;

(2)若 兩個實數(shù)根分別為 ,且,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小西“過直線外一點作這條直線的垂線”的尺規(guī)作圖過程.

已知:直線l及直線l外一點P.

求作:直線PQ,使得PQl.

做法:如圖,

①在直線l的異側(cè)取一點K,以點P為圓心,PK長為半徑畫弧,交直線l于點AB;

②分別以點A,B為圓心,大于AB的同樣長為半徑畫弧,兩弧交于點Q(P點不重合);

③作直線PQ,則直線PQ就是所求作的直線.

根據(jù)小西設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵PA= ,QA= ,

PQl( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,點F是 BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

同步練習(xí)冊答案