【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:

(1)DCF+D=90°;(2)AEF+ECF=90°;(3)SBEC=2SCEF;(4)若∠B=80°,則∠AEF=50°.

其中一定成立的是_____(把所有正確結(jié)論的序號(hào)都填在橫線上)

【答案】(1)(2)(4)

【解析】分析:由平行四邊形的性質(zhì)和等腰三角形的性質(zhì)得出(1)正確;

ASA證明△AEF≌△DMF得出EF=MF,AEF=M由直角三角形斜邊上的中線性質(zhì)得出CF=EM=EF,由等腰三角形的性質(zhì)得出∠FEC=ECF,得出(2)正確;

證出SEFC=SCFM,MCBE,得出SBEC2SEFC,得出(3)錯(cuò)誤

由平行線的性質(zhì)和互余兩角的關(guān)系得出(4)正確;即可得出結(jié)論.

詳解:(1FAD的中點(diǎn),AF=FD

∵在ABCDAD=2AB,AF=FD=CD,∴∠DFC=DCF

ADBC∴∠DFC=FCB,BCD+∠D=180°,∴∠DCF=BCF,∴∠DCF=BCD,∴∠DCF+D=90°,故(1)正確;

2)延長(zhǎng)EF,CD延長(zhǎng)線于M如圖所示

∵四邊形ABCD是平行四邊形,ABCD∴∠A=MDF

FAD中點(diǎn),AF=FD.在AEF和△DFM中,∵A=∠FDM,AF=DF,∠AFE=∠DFM,∴△AEF≌△DMFASA),EF=MF,AEF=M

CEAB∴∠AEC=90°,∴∠AEC=ECD=90°.

FM=EF,CF=EM=EF∴∠FEC=ECF,

∴∠AEF+∠ECF=AEF+∠FEC=AEC=90°,故(2)正確;

3EF=FMSEFC=SCFM

MCBE,SBEC2SEFC故(3)錯(cuò)誤;

4∵∠B=80°,∴∠BCE=90°﹣80°=10°.

ABCD,∴∠BCD=180°﹣80°=100°,∴∠BCF=BCD=50°,∴∠FEC=ECF=50°﹣10°=40°,∴∠AEF=90°﹣40°=50°,故(4)正確.

故答案為:1)(2)(4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來(lái)探究?jī)深愄厥獾墓垂蓴?shù).通過(guò)觀察完成下面兩個(gè)表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):

表一 表二

a

b

c

a

b

c

3

4

5

6

8

10

5

12

13

8

15

17

7

24

25

10

24

26

9

41

12

37

(1)仔細(xì)觀察,表一中a為大于1的奇數(shù),此時(shí)b、c的數(shù)量關(guān)系是_____________,

a、b、c之間的數(shù)量關(guān)系是_________________________

(2)仔細(xì)觀察,表二中a為大于4的偶數(shù),此時(shí)b、c的數(shù)量關(guān)系是_____________,

a、b、c之間的數(shù)量關(guān)系是_________________________;

(3)我們還發(fā)現(xiàn),表一中的三邊長(zhǎng)“3,4,5”與表二中的“6,8,10”成倍數(shù)關(guān)系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關(guān)系……請(qǐng)直接利用這一規(guī)律計(jì)算:在Rt△ABC中,當(dāng),時(shí),斜邊c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的坐標(biāo)系中,畫(huà)出函數(shù)y=2y=2x+6的圖象,并結(jié)合圖象求:

(1)方程2x+6=0的解;

(2)不等式2x+6>2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解“數(shù)學(xué)思想作為對(duì)學(xué)習(xí)數(shù)學(xué)幫助有多大?”一研究員隨機(jī)抽取了一定數(shù)量的高校大一學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并將調(diào)查得到的數(shù)據(jù)用下面的扇形圖和下表來(lái)表示(圖、表都沒(méi)制作完成).

選項(xiàng)

幫助很大

幫助較大

幫助不大

幾乎沒(méi)有幫助

人數(shù)

a

543

269

b

根據(jù)圖、表提供的信息.
(1)請(qǐng)問(wèn):這次共有多少名學(xué)生參與了問(wèn)卷調(diào)查?
(2)算出表中a、b的值. (注:計(jì)算中涉及到的“人數(shù)”均精確到1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,正方形ABCD中,點(diǎn)A,B的坐標(biāo)分別為(0,10),(8,4),點(diǎn)C在第一象限.動(dòng)點(diǎn)P在正方形ABCD的邊上,從點(diǎn)A出發(fā)沿A→B→C→D→A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度在x軸正半軸上運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)P點(diǎn)在邊AB上運(yùn)動(dòng)時(shí)點(diǎn)Q的橫坐標(biāo)x(長(zhǎng)度單位)關(guān)于運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖②所示,請(qǐng)寫(xiě)出點(diǎn)Q開(kāi)始運(yùn)動(dòng)時(shí)的坐標(biāo)及點(diǎn)P運(yùn)動(dòng)速度;

(2)求正方形邊長(zhǎng)及頂點(diǎn)C的坐標(biāo);
(3)在(1)中,設(shè)△OPQ的面積為S,求S與t的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍.
(4)如果點(diǎn)P、Q保持原速度不變,當(dāng)點(diǎn)P沿A→B→C→D勻速運(yùn)動(dòng)時(shí),OP與PQ能否相等?若能,寫(xiě)出所有符合條件的t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD的長(zhǎng)和寬分別為16cm和12cm,連接其對(duì)邊中點(diǎn),得到四個(gè)矩形,順次連接矩形AEFG各邊中點(diǎn),得到菱形l1;連接矩形FMCH對(duì)邊中點(diǎn),又得到四個(gè)矩形,順次連接矩形FNPQ各邊中點(diǎn),得到菱形l2;…如此操作下去,則l4的面積是cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊做等腰直角△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y= (k<0)上運(yùn)動(dòng),則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=8cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),CPABC的周長(zhǎng)分成相等的兩部分.

(2)當(dāng)t為何值時(shí),CPABC的面積分成相等的兩部分,并求出此時(shí)CP的長(zhǎng);(說(shuō)明:直角三角形斜邊上的中線等于斜邊的一半)

(3)當(dāng)t為何值時(shí),BCP為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案