2.△ABC中,∠ACB=90°,CD⊥AB于D,AD=4,sin∠ACD=$\frac{4}{5}$,求CD和cos∠BCD的值.

分析 根據(jù)三角函數(shù)的定義結(jié)合已知條件可以求出AC、CD,利用∠BCD=∠A求∠BCD的余弦值.

解答 解:∵CD⊥AB,
∴∠ADC=90°,
∵sin∠ACD=$\frac{AD}{AC}$=$\frac{4}{5}$,AD=4,
∴AC=5,
∴CD=$\sqrt{A{C}^{2}-A{D}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵∠ACB=90°,
∴∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠BCD=∠A,
∴cos∠BCD=cos∠A=$\frac{AD}{AC}$=$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查直角三角形的性質(zhì)、三角函數(shù)的定義、勾股定理、同角的余角相等等知識(shí),熟記性質(zhì)是解題的關(guān)鍵,作出圖形更形象直觀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.化簡(jiǎn).
(1)$\sqrt{\frac{3}{121}}$;
(2)$\sqrt{\frac{27}{144}}$;
(3)$\frac{\sqrt{2}}{3\sqrt{7}}$;
(4)$\frac{3\sqrt{3}}{\sqrt{8}}$;
(5)$\sqrt{\frac{0.04×144}{0.49×169}}$;
(6)$\sqrt{\frac{{a}^{2}b}{16{c}^{2}}}$(a≥0,b≥0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知x>y>0,化簡(jiǎn):$\sqrt{\frac{9{x}^{2}}{(x-y)^{2}}}$=$\frac{3x}{x-y}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若方程組$\left\{\begin{array}{l}{{x}^{2}+2ay=5}\\{y-x=6a}\end{array}\right.$有正整數(shù)解,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果a2m-1•am+2=a7,則m的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.有下列各數(shù):-0.101 001,$\sqrt{7}$,$\frac{1}{4}$,-$\frac{π}{2}$,$\root{3}{9}$,0,-$\sqrt{16}$,其中無(wú)理數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.當(dāng)m為何值時(shí),關(guān)于x的方程$\frac{x}{x+5}$-3=$\frac{m}{x+5}$有一個(gè)正數(shù)解?求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.解方程組:
(1)$\left\{\begin{array}{l}{\frac{1}{2}x+3y=11}\\{3y=x-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x+1}{5}=\frac{y-3}{2}}\\{3x+4y=32}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,點(diǎn)E、F、G、H分別在菱形ABCD的四條邊上,BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE,得到四邊形EFGH,若AB=a,∠A=60°,當(dāng)四邊形
EFGH的面積取得最大時(shí),BE的長(zhǎng)度為(  )
A.$\frac{\sqrt{3}a}{3}$B.$\frac{\sqrt{2}a}{2}$C.$\frac{a}{2}$D.$\frac{a}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案