精英家教網 > 初中數學 > 題目詳情

【題目】如圖,平行四邊形ABCD中,對角線ACBD相交于點O,EFAC上的兩點,當E、F滿足下列哪個條件時,四邊形DEBF不一定是平行四邊形( 。

A.ADE=CBFB.ABE=CDFC.DE=BFD.OE=OF

【答案】C

【解析】

根據平行四邊形的性質,以及平行四邊形的判定定理即可作出判斷.

A、在平行四邊形ABCD中,

AO=CO,DO=BO,ADBCAD=BC,

∴∠DAE=BCF,

若∠ADE=CBF,

ADECBF中,

∴△ADE≌△CBF,

AE=CF,

OE=OF,

∴四邊形DEBF是平行四邊形;

B、若∠ABE=CDF,

ABECDF中,

,

∴△ABE≌△CDF,

AE=CF,

AO=CO,

OE=OF,

OD=OB,

∴四邊形DEBF是平行四邊形;

C、若DEAC不垂直,則滿足AC上一定有一點M使DM=DE,同理有一點N使BF=BN,則四邊形DEBF不一定是平行四邊形,則選項錯誤;

D、若OE=OF

OD=OB,

∴四邊形DEBF是平行四邊形;

故選C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點,PE⊥BC于點E, PF⊥CD于點F,連接AP, EF.給出下列結論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結論的序號為(

A. ①②④⑤⑥B. ①②④⑤

C. ②④⑤D. ②④⑤⑥

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4 , S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市有著豐富的土地資源,適宜種植玉米,某企業(yè)已收購玉米525噸,根據市場信息,將玉米直接銷售,每噸可獲利100元;如果對玉米進行粗加工,每天可加工8噸,每噸可獲利1000元;如果對玉米進行精加工,每天可加工05噸,每噸可獲利5000元.由于受條件限制,在同一天中只能采取一種加工方式,并且必須在30天內將這批玉米全部銷售,為此,研究了兩種方案.

1)方案一:將玉米全部粗加工后銷售,則可獲利 元;

2)方案二:30天時間都進行精加工,未來得及加工的玉米,在市場上直接銷售,則可獲利 元;

3)問是否存在第三種方案,將部分玉米精加工,其余玉米粗加工,并恰好在30天內完成?若存在,請求銷售后所獲利潤:若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCD中,過點DDE⊥AB于點E,點FCD上,CF=AE,連接BF,AF.

(1)求證:四邊形BFDE是矩形;

(2)AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2、C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(點M不與B、C重合),CNDMCNAB交于點N,連接OMON、MN.下列四個結論:①△CNB≌△DMC;②△CON≌△DOM;③AN2CM2MN2;④若AB2,則SOMN的最小值是.其中正確結論的個數是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解同學們每月零花錢的數額,校園小記者隨機調查了本校部分同學,根據調查結果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.

調查結果統(tǒng)計表

組別

分組(單位:元)

人數

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

請根據以上圖表,解答下列問題:

(1)填空:這次被調查的同學共有__人,a+b=__,m=___

(2)求扇形統(tǒng)計圖中扇形C的圓心角度數;

(3)該校共有學生1000人,請估計每月零花錢的數額x60≤x<120范圍的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PB與⊙O相切于點B,過點BOP的垂線BA,垂足為C,交⊙O于點A,連結PA,AOAO的延長線交⊙O于點E,與PB的延長線交于點D

1)求證:PA是⊙O的切線;

2)若tanBAD=,且OC=4,求BD的長.

查看答案和解析>>

同步練習冊答案