【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD為∠CAB的角平分線,若CD=3,則DB=____.
科目:初中數(shù)學 來源: 題型:
【題目】某校組織甲、乙兩隊開展“保護生態(tài)環(huán)境知識競賽”,滿分為10分,得分均為整數(shù),規(guī)定得分達到6分及以上為合格,達到9分及以上為優(yōu)秀,如圖是甲、乙兩隊學生這次競賽成績分布條形統(tǒng)計圖.
根據以上信息,請解答下面的問題:
(1)在下面甲、乙兩隊的成績統(tǒng)計表中,a= , b=c= .
平均分 | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 | |
甲隊 | a | 6 | c | 2.76 | 90% | 20% |
乙隊 | 7.2 | b | 8 | 1.36 | 80% | 10% |
(2)小華同學說:“我在這次比賽中得到了7分,這在我所在的小隊成績中屬于中等偏上的位置!”觀察(1)中的表格,小華是隊的學生;(填“甲”或“乙”)
(3)甲隊同學認為:甲隊的合格率、優(yōu)秀率均高于乙隊,所以甲隊的成績好于乙隊.但乙隊同學不同意甲隊同學的說法,認為乙隊的成績要好于甲隊.請你寫出兩條支持乙隊同學觀點的理由.
(4)學校要從從甲、乙兩隊獲得優(yōu)秀的學生中,選取兩名同學參加市級比賽,則恰好同時選中的兩人均為甲隊學生的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為開展第二課堂,組織調查了本校300名學生各自最喜愛的一項體育活動,制成了如下扇形統(tǒng)計圖,根據統(tǒng)計圖判斷下列說法,其中正確的一項是( 。
A. 在調查的學生中最喜愛籃球的人數(shù)是50人
B. 喜歡羽毛球在統(tǒng)計圖中所對應的圓心角是144°
C. 其他所占的百分比是20%
D. 喜歡球類運動的占50%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖),然后將剩余部分拼成一個長方形(如圖).
(1)上述操作能驗證的等式是 ;(請選擇正確的一個)
A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b) C.a2+ab=a(a+b)
(2)應用你從(1)選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值.
②計算:(1-)(1-)(1-)…(1-)(1-).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,E分別在AC,DF上,BD,CE均與AF相交,∠1=∠2,∠C=∠D,求證:∠A=∠F.
證明:∵∠1=∠2(已知),∠2=∠3(______)
∴∠1=∠3(______)
∴BD∥CE(______)
∴∠C=∠ABD(______)
又∵∠C=∠D(已知)
∴∠D=∠ABD(_______)
∴________(________)
∴∠A=∠F(________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,則∠DAE等于( )
A.20°
B.25°
C.30°
D.35°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分5分)畫圖并填空:
如圖,在方格紙內將△ABC經過一次平移后得到△A′B′C′,圖中標出了點C的對應點C′.
(1)畫出平移后的△A′B′C′,(利用網格點和三角板畫圖)
(2)畫出AB邊上的高線CD;
(3)畫出BC邊上的中線AE;
(4)在平移過程中高CD掃過的面積為 .(網格中,每一小格單位長度為1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC在直角坐標系內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2)(正方形網格中每個小正方形的邊長均為一個單位長度).
①畫出△ABC向下平移4個單位長度得到的△A1B1C1 , 點C1的坐標是 ;
②以點B為位似中心,在網格內畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且位似比為2:1 ,點C2的坐標是 ;
③若M(a,b)為線段AC上任一點,寫出點M的對應點M2的坐標 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com