【題目】如圖,BD是∠ABC的平分線,DE∥CB,交AB于點E,∠A=45°,∠BDC=60°.求△BDE各內角的度數.
【答案】△BDE各內角的度數分別為:∠EBD=15°,∠EDB=15°,∠BED=150°.
【解析】
根據三角形的外角與內角的關系可得∠EBD=15°,再根據DE//CB,BD是∠ABC的平分線,可得∠EDB=15°,再根據三角形的內角和定理即可得∠BED=150°.
∵∠BDC=∠A+∠ABD(△ABD外角=兩內角之和),
∴∠ABD=∠BDC-∠A=60°-45°=15°,
∵DE//CB,
∴∠CBD=∠EBD(內錯角相等),
又∵BD是∠ABC的平分線,
∴∠CBD=∠BDE,
∴∠EDB=∠EBD=15°,
∴∠BED=180°-∠EBD=∠EDB=180°-15°-15°=150°,
綜上所述,△BDE各內角的度數分別為:∠EBD=15°,∠EDB=15°,∠BED=150°.
科目:初中數學 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產品,根據物價部門規(guī)定:該產品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.求證:
(1)△ABC∽△POM;
(2)2OA2=OPBC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于坐標原點,點A的坐標為(a,2),點B的坐標為(﹣1,﹣ ),點C的坐標為(2 ,c),那么a,c的值分別是( )
A.a=﹣1,c=﹣
B.a=﹣2 ,c=﹣2
C.a=1,c=
D.a=2 ,c=2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從M、N兩地相向而行,甲車出發(fā)1小時后乙車才出發(fā),并以各自速度勻速行駛,甲車出發(fā)3小時兩車相遇,相遇后兩車仍按原速度原方向各自行駛.如圖折線A-B-C-D表示甲、乙兩車之間的距離S(千米) 與甲車出發(fā)時間(小時)之間的函數圖象.則:
①M、N兩地之間的距離為________________千米;
②當時,__________________小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,延長AM交BC于點N,連接DM.下列結論:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程k2x2﹣2(k+1)x+1=0有兩個實數根.
(1)求k的取值范圍;
(2)當k=1時,設所給方程的兩個根分別為x1和x2 , 求 + 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】感知:如圖①,點E在正方形ABCD的BC邊上,BF⊥AE于點F,DG⊥AE于點G.可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C在∠MAN的邊AM、AN上,點E, F在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
應用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊B上.CD=2BD.點E, F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com