【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(﹣1,2),且與X軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正確的有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【答案】D
【解析】
試題分析:①將x=﹣2代入y=ax2+bx+c,可以結(jié)合圖象得出x=﹣2時(shí),y<0;
②由拋物線(xiàn)開(kāi)口向下,可得a<0;由圖象知拋物線(xiàn)的對(duì)稱(chēng)軸大于﹣1,則有x=>﹣1,即可得出2a﹣b<0;
③已知拋物線(xiàn)經(jīng)過(guò)(﹣1,2),即a﹣b+c=2(1),由圖象知:當(dāng)x=1時(shí),y<0,即a+b+c<0(2),聯(lián)立(1)(2),可得a+c<1;
④由拋物線(xiàn)的對(duì)稱(chēng)軸大于﹣1,可知拋物線(xiàn)的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,結(jié)合頂點(diǎn)的縱坐標(biāo)與a<0,可以得到b2+8a>4ac.
解:①由函數(shù)的圖象可得:當(dāng)x=﹣2時(shí),y<0,即y=4a﹣2b+c<0,故①正確;
②由函數(shù)的圖象可知:拋物線(xiàn)開(kāi)口向下,則a<0;拋物線(xiàn)的對(duì)稱(chēng)軸大于﹣1,即x=>﹣1,得出2a﹣b<0,故②正確;
③已知拋物線(xiàn)經(jīng)過(guò)(﹣1,2),即a﹣b+c=2(1),由圖象知:當(dāng)x=1時(shí),y<0,即a+b+c<0(2),
聯(lián)立(1)(2),得:a+c<1,故③正確;
④由于拋物線(xiàn)的對(duì)稱(chēng)軸大于﹣1,所以?huà)佄锞(xiàn)的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn)(整式乘法)
(1). (-3ab)· (- 4b)2 ; (2)..
(3). 3x(x2-2x-1)+6x (4).+(-x+1)(x-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決后面的問(wèn)題。
材料:我們知道,n個(gè)相同的因數(shù)a相乘可記為an,如23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3)
一般地,若an=b (a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381(即log381=4)
(1)計(jì)算以下各對(duì)數(shù)的值:log24= ,log216= ,log264= .
(2)觀(guān)察(1)中三數(shù)4、16、64之間滿(mǎn)足怎樣的關(guān)系式?log24、log216、log264之間又滿(mǎn)足怎樣的關(guān)系式?
(3)根據(jù)(2)的結(jié)果,我們可以歸納出:logaM+logaN=logaM N (a>0且a≠1,M>0,N>0),請(qǐng)你根據(jù)冪的運(yùn)算法則:am=an+m以及對(duì)數(shù)的定義證明該結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院辦公廳在2015年3月16日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 填空題:如圖,AB//CD,∠ABC=50°,∠CPN=150°,∠PNB=60°,∠NDC=60°,求∠BCP的度數(shù)。
解:,(已知)
,(等量代換)
PN // CD,( )
_________=180°,( )
,(已知)
,(已知)
____________,(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
,(已知)
__________,(等量代換)
BCP=BCD-PCD=____________°-30°=_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D,E,F,G,H,I是三角形ABC三邊上的點(diǎn),連結(jié)EI,EF∥BC, GH∥AC, DI∥AB.
(1)寫(xiě)出與∠IEC是同旁?xún)?nèi)角的角。
(2)判斷∠GHC與∠FEC是否相等,并說(shuō)明理由。
(3)若EI平分∠FEC,∠C=56°,∠B=50°,求∠EID的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程:mx+2=2(m-x)的解滿(mǎn)足│x│-1=0,則m的值是( )
A. 2 B. 4 C. 2或0 D. 4或0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com