【題目】x1,x2是一元二次方程x2-3x-2=0的兩個實數(shù)根,則x12+3x1x2+x22的值為

【答案】7.

【解析】

利用根與系數(shù)的關系求出兩根之積與兩根之和,將所求式子利用完全平方公式變形后,代入即可求出值.

由題意,得:x1+x2=3,x1x2=-2

原式=x1+x22+x1x2=9-2=7

故答案為:7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調(diào)查,統(tǒng)計整理并繪制了以下兩幅不完整的統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:

(1)共抽取_____名學生進行問卷調(diào)查;

(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“籃球”所對應的圓心角的度數(shù);

(3)該校共有2500名學生,請估計全校學生喜歡足球運動的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】乙兩輛汽車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設甲、乙兩車與B地的路程分別為y(km),y(km),甲車行駛的時間為x(h),y、y與x之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:
(1)乙車休息了h.
(2)求乙車與甲車相遇后y關于x的函數(shù)表達式,并寫出自變量x的取值范圍.
(3)當兩車相距40km時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題“兩直線平行,內(nèi)錯角的平分線互相平行”是真命題嗎?如果是,請給出證明;如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a4·a2,(-a2)3,a12+a2,a2·a3中,計算結(jié)果為a6的有(  )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻,棉花和蔬菜,已知種植農(nóng)作物每公頃所需的勞動力人數(shù)及投入的設備資金如下表:

農(nóng)作物品種

每公頃需勞動力

每公頃需投入資金

水稻

4

1萬元

棉花

8

1萬元

蔬菜

5

2萬元

已知該農(nóng)場計劃在設備上投入67萬元,應該怎樣安排三種農(nóng)作物的種植面積,才能使所有的職工都有工作,而且投入的資金正好夠用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.

(1)寫出點D的坐標

(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.

①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;

②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;

③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,l是四邊形ABCD的對稱軸,如果AD∥BC,有下列結(jié)論:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC,其中正確的結(jié)論是(把你認為正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元

(1) 求甲、乙兩種商品每件的進價分別是多少元?

(2) 商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤

查看答案和解析>>

同步練習冊答案