【題目】如圖,AB為半圓的直徑,O為半圓的圓心,AC是弦,取弧的中點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)當(dāng)AB=10,AC=5時(shí),求CE的長(zhǎng);
(3)連接CD,AB=10.當(dāng)=時(shí),求DE的長(zhǎng).
【答案】(1)詳見解析;(2)CE =;(3)DE =4.
【解析】
(1)連接OD,如圖,根據(jù)圓周角定理得到∠BAD=∠CAD,再證明OD∥AC,然后利用DE⊥AE得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;
(2)作OH⊥AC于H,如圖,根據(jù)垂徑定理得到AH=CH=,易得四邊形ODEH為矩形,則OD=HE=AB=5,然后計(jì)算HE-HC即可;
(3)根據(jù)三角形面積公式,由=得到CE:AE=1:4,設(shè)CE=x,則AE=4x,所以AH=CH=x,則HE=x,然后利用HE=OD得x=2,則AH=3,然后根據(jù)勾股定理計(jì)算出OH,從而得到DE的長(zhǎng).
(1)證明:連接OD,如圖,
∵點(diǎn)D為的中點(diǎn),
∴=,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠DAC,
∴OD∥AC,
∴DE⊥AE,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)解:作OH⊥AC于H,如圖,則AH=CH=AC=,
易得四邊形ODEH為矩形,
∴OD=HE=AB=5,
∴CE=HE-HC=5-=;
(3)解:∵=,
∴CE:AE=1:4,
設(shè)CE=x,則AE=4x,
則AH=CH=x,
∴HE=x+x=x,
∵HE=OD,
∴x=5,解得x=2,
∴AH=3,
在Rt△AOH中,OH==4,
∴DE=OH=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時(shí),試證明:BE=AE+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線過點(diǎn),直線:與直線交于點(diǎn)B,與x軸交于點(diǎn)C.
(1)求k的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)b=4時(shí),直接寫出△OBC內(nèi)的整點(diǎn)個(gè)數(shù);
②若△OBC內(nèi)的整點(diǎn)個(gè)數(shù)恰有4個(gè),結(jié)合圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置教師辦公桌椅A、B兩型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B兩型桌椅的單價(jià);
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要運(yùn)費(fèi)10元.設(shè)購(gòu)買A型桌椅x套時(shí),總費(fèi)用為y元,求y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)求出總費(fèi)用最少的購(gòu)置方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面真角坐標(biāo)系中, 有、兩點(diǎn), 若在軸上取一點(diǎn), 使點(diǎn)到點(diǎn)和點(diǎn)的距離之和最小,則點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對(duì)角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標(biāo)菱形”.
(1)已知點(diǎn)A(1,0),B(0,),則以AB為邊的“坐標(biāo)菱形”的最小內(nèi)角為______;
(2)若點(diǎn)C(2,1),點(diǎn)D在直線y=5上,以CD為邊的坐標(biāo)菱形”為正方形,求育直線CD表達(dá)式;
(3)⊙O的半徑為,點(diǎn)P的坐標(biāo)為(3,m),若在⊙O上存在一點(diǎn)Q,使得以QP為邊的“坐標(biāo)菱形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(1,0),B(0,2),C(-4,2),若以A,B,C,D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,.點(diǎn)在上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們運(yùn)動(dòng)的時(shí)間為.
(1)如圖①,,,若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)時(shí),與是否全等,請(qǐng)說明理由,并判斷此時(shí)線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,是否存在實(shí)數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.
(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com