【題目】在平面直角坐標(biāo)系xOy中,直線過(guò)點(diǎn),直線:與直線交于點(diǎn)B,與x軸交于點(diǎn)C.
(1)求k的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)b=4時(shí),直接寫(xiě)出△OBC內(nèi)的整點(diǎn)個(gè)數(shù);
②若△OBC內(nèi)的整點(diǎn)個(gè)數(shù)恰有4個(gè),結(jié)合圖象,求b的取值范圍.
【答案】(1)k=2;(2)①有2個(gè)整點(diǎn);②或.
【解析】
(1)把A(1,2)代入中可得k的值;
(2)①將b=4代入可得:直線解析式為y=-x+4,畫(huà)圖可得整點(diǎn)的個(gè)數(shù);
②分兩種情況:b>0時(shí),b<0時(shí),畫(huà)圖可得b的取值.
解:(1)∵直線過(guò)點(diǎn),
∴k=2;
(2)①將b=4代入可得:直線解析式為y=-x+4,畫(huà)圖可得整點(diǎn)的個(gè)數(shù)
如圖:有2個(gè)整點(diǎn);
②如圖:
觀察可得:或.
故答案為:(1)k=2;(2)①有2個(gè)整點(diǎn);②或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校準(zhǔn)備新建一個(gè)長(zhǎng)度為L的讀書(shū)長(zhǎng)廊,并準(zhǔn)備用若干塊帶有花紋和沒(méi)有花紋的兩種規(guī)格大小相同的正方形地面磚搭配在一起,按圖中所示的規(guī)律拼成圖案鋪滿長(zhǎng)廊,已知每個(gè)小正方形地面磚的邊長(zhǎng)均為0.5m.
(1)按圖示規(guī)律,第一圖案的長(zhǎng)度L1= m;第二個(gè)圖案的長(zhǎng)度L2= m.
(2)請(qǐng)用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長(zhǎng)度Ln(m)之間的關(guān)系;
(3)當(dāng)走廊的長(zhǎng)度L為20.5m時(shí),請(qǐng)計(jì)算出所需帶有花紋圖案的瓷磚的塊數(shù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如下表所示.
A型 | B型 | |
進(jìn)價(jià)(元/盞) | 40 | 65 |
售價(jià)(元/盞) | 60 | 100 |
(1)若該商場(chǎng)購(gòu)進(jìn)這批臺(tái)燈共用去2500元,問(wèn)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
(2)在每種臺(tái)燈銷售利潤(rùn)不變的情況下,若該商場(chǎng)銷售這批臺(tái)燈的總利潤(rùn)不少于1400元,問(wèn)至少需購(gòu)進(jìn)B種臺(tái)燈多少盞?
(3)若該商場(chǎng)預(yù)計(jì)用不少于2500元且不多于2600元的資金購(gòu)進(jìn)這批臺(tái)燈,為了打開(kāi)B種臺(tái)燈的銷路,商場(chǎng)決定每售出一盞B種臺(tái)燈,返還顧客現(xiàn)金a元(10<a<20),問(wèn)該商場(chǎng)該如何進(jìn)貨,才能獲得最大的利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為—1,3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x。
⑴若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
⑵數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為5?若存在,請(qǐng)求出x的值。若不存在,請(qǐng)說(shuō)明理由?
⑶當(dāng)點(diǎn)P以每分鐘一個(gè)單位長(zhǎng)度的速度從O點(diǎn)向左運(yùn)動(dòng)時(shí),點(diǎn)A以每分鐘5個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),點(diǎn)B以每分鐘20個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),問(wèn)它們同時(shí)出發(fā),幾分鐘后點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,已知O是AC的中點(diǎn),AE=CF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)若OD=AC,則四邊形ABCD是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在紙面上有一數(shù)軸如圖,根據(jù)給出的數(shù)軸,解答下面的問(wèn)題:
(1)A表示數(shù) ,B表示數(shù) ,A,B兩點(diǎn)之間的距離是 。
(2)折疊紙面.若在數(shù)軸上﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問(wèn)題:
①9表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②若數(shù)軸上M、N兩點(diǎn)之間的距離為2020(M在N的右側(cè)),且M、N兩點(diǎn)經(jīng)折疊后重合,求M、N兩點(diǎn)表示的數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,每套西裝的定價(jià)為300元,每條領(lǐng)帶的定價(jià)為50元,廠方在開(kāi)展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領(lǐng)帶;
②西裝和領(lǐng)帶都按定價(jià)的付款.
現(xiàn)某客戶要到該服裝廠購(gòu)買西裝20套,領(lǐng)帶條()
(1)若該客戶按方案①購(gòu)買,則需付款____________元(用含的代數(shù)式表示);
若該客戶按方案②購(gòu)買,則需付款____________元(用含的代數(shù)式表示);
(2)若,則通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是邊上的一動(dòng)點(diǎn),點(diǎn)是上一點(diǎn),且,、相交于點(diǎn).
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.樂(lè)樂(lè)用后發(fā)現(xiàn),通過(guò)調(diào)節(jié)扣加長(zhǎng)或縮短單層部分的長(zhǎng)度,可以使挎帶的長(zhǎng)度(單層部分與雙層部分長(zhǎng)度的和,其中調(diào)節(jié)扣所占的長(zhǎng)度忽略不計(jì))增長(zhǎng)或縮短.經(jīng)測(cè)量,得到如下數(shù)據(jù):
單層部分的長(zhǎng)度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長(zhǎng)度(cm) | … | 73 | 72 | 71 |
| … | 0 |
(1)根據(jù)上表中數(shù)據(jù)的規(guī)律,填寫(xiě)表格中空白處的數(shù)據(jù);
(2)設(shè)單層部分的長(zhǎng)度為xcm,請(qǐng)用含x的代數(shù)式表示出雙層部分的長(zhǎng)度 cm;
(3)根據(jù)樂(lè)樂(lè)的身高和習(xí)慣,挎帶的長(zhǎng)度為110cm時(shí),背起來(lái)最舒適,請(qǐng)求出此時(shí)單層部分的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com